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Abstract

Kirigami is a variation of origami, altering the appearance and behavior of a thin sheet
of material using folds and cuts. Kirigami is used to create ultralightweight, bi-directional
springs. The spring design is optimized by creating iterative patterns of springs using B-
spline curves characterized by three control points and a ribbon-width scalar. Each design
is then characterized using a numerical solver to determine the force necessary for a given
displacement of the spring. Force and displacement are then measured experimentally for
selected patterns to confirm model accuracy and develop numerical relationships between
spring patterns. We then create a library of springs from which we can choose the desired
amount of force for a given use case. The primary use case is tensioning to maintain the
orientation of photovoltaic (PV) panels in the Space Solar Power Project.
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Chapter 1

Introduction

Somewhere, something incredible is waiting to be known.

Carl Sagan

Figure 1.1 Modularity and folding and deploy-
ment method of Caltech Space Solar Power
Project. Reproduced with permission from
(Abiri et al., 2022)

The Space Solar Power Project (SSPP)

is a collaboration between three labs at the

California Institute of Technology (Caltech),

which are headed by Harry Atwater, Ali Ha-

jimiri, and Sergio Pellegrino. The goal of

the SSPP is to create spacecraft that col-

lect solar energy using photovoltaics (PV)

and radiate the energy using radio-frequency

(RF) transmitters to receivers on Earth at

microwave frequencies, which avoids large

losses of solar energy when passing through

the atmosphere, as the atmosphere is mostly

transparent to microwave radiation. The en-

ergy flux from the Sun at the top of the at-

mosphere is about 1313 W/m2 , whereas the
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flux at the surface of the Earth is only about 343 W/m2 (Frame & Revell, 2023). This loss

across the atmosphere occurs due to a combination of reflection of energy off of clouds and

the atmosphere, and absorption and re-radiation of energy at all layers of the atmosphere.

Re-radiated energy is emitted evenly in all directions, so approximately half of all absorbed

energy is radiated back into space. Further, PV panels, colloquially known as solar panels,

on the surface can only collect energy while in direct sunlight. This means solar panels are

ineffective at night and during cloudy or stormy weather. This is particularly challenging

in areas with frequently inclement weather, and in regions in the far north and south, as

these regions can have months with little to no sunlight. Space solar collection can generate

energy 24 hours a day, regardless of surface weather. The combination of these factors leads

to an approximate eight-fold increase in potential power from space solar in comparison to

surface solar (Abiri et al., 2022).

Figure 1.2 Table showing the payload capacities and launch altitudes of various rockets.
(SpaceX, 2025a), (SpaceX, 2025b), (NASA, 2024a), (NASA, 2024b), (ULALaunch, 2025),
(RocketLab, 2025), (SpaceX, 2025c)

The main obstacle to implementing space solar is in the difficulty and cost of launching

spacecraft to collect solar energy in space. The two main factors that influence the cost of

space launches are the weight of the spacecraft and whether the solar array can be launched

in completed form or requires assembly in space. It is more expensive to launch larger and

heavier payloads, and the types of rocket that can carry the largest payloads are launched less
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frequently. Figure 1.2 shows launch capacities and what orbits various rockets can achieve.

The two orbits considered here are low Earth orbit (LEO) and geotransfer orbit (GTO).

LEOs are cheaper and easier than GTOs to launch to as they are much closer to the surface,

but receive less consistent sunlight. GTOs are also a type of geostationary orbit, which means

that a space solar system in GTO would require only one receiving station on Earth, as it

would remain fixed over one location. A space solar system in LEO would require a chain

of receiving stations, as this orbit moves relative to the surface of the Earth. Both of these

orbits are currently in consideration for the SSPP. So for example, in practical applications,

a payload weighing 8 tonnes launching to GTO could be carried on the Antares, Atlas V, or

Falcon 9, or it could be one part of the whole payload on the Falcon Heavy or SLS. However,

a 10 tonne payload going to GTO could only be carried on the Falcon Heavy or SLS.

For these reasons, the Caltech SSPP is developing ultralightweight, autonomously de-

ployable solar spacecraft. These spacecrafts are highly modular and condense the PV panels

and RF transmission elements into small 10cm x 10cm tiles, each weighing only a few grams.

Each tile is flexible in order to be stowed for launch. The tiles are then assembled into 2m x

60m strips, which combine into a 60m x 60m module (Figure 1, top) weighing about 650 kg

(Abiri et al., 2022)(CalTech, 2017). The modularity has multiple benefits: it allows for easy

scalability of the design, simple construction, redundancy in the case of damage to any one

tile, and more compact, and thus easier, packaging, storage, and deployment (Figure 1.1,

bottom). This redundancy is very important because, due to the nature of space and the

vast distances and high speeds of orbits, they will be almost impossible to service, and any

possible service or repair would be prohibitively expensive. Each tile is made up of layers

of PV panels, RF transmitters, and integrated electronic circuits that are each fixed into a

carbon fiber frame. The frames are then connected to one another with longer carbon fiber

fixtures.

However, the tiles and the carbon fiber frames have very different thermal expansion

coefficients (CTE), which causes them to expand and contract at different rates as the tiles
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change temperature. This discrepancy leads to warping and shifting of the tiles within their

frames, which disrupts both the collection of solar energy and the transmission of the acquired

energy back to Earth. In order to combat this warping, this research builds on the work

of George Popov at Caltech to design and characterize thin-film springs based on kirigami

designs that will provide even tensioning for the tiles even as the tiles and frame expand

and contract. This is not a problem for ordinary space-based solar arrays, as historically

PV panels have not been flexible, and so will not experience warping. Stiff solar panels also

don’t need frames for support, so the changes from differences in CTE can be accounted for

in the connections between panels.

In Chapter 2 we review other applications of kirigami, as well as how kirigami has been

used previously to create thin-film springs, and compare the characteristics of existing springs

against our goals. We also characterize the material, Kapton®, that the springs are made

out of. In Chapter 3, we explain the methodology by which the springs were designed,

manufactured, and tested, as well as sources of error that arise through our design and

manufacturing process. In Chapter 4, we detail the findings from both computational and

experimental tests and discuss the results. We show that the springs have the desired three-

phase force-displacement curve, provide forces and displacements on the correct scale for

our usage, and provide a sufficient amount of variation between patterns. In Chapter 5, we

assemble the spring library and detail an example use case: a fixed (CTE=0) carbon fiber

frame, and a representative tile made entirely of Kapton®.
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Chapter 2

Background

The whole of science is nothing more than a refinement of
everyday thinking.

Albert Einstein

2.1 Space Solar Project Tile Connections

As discussed in the Introduction, the PV/RF panels are fixed into carbon fiber composite

frames and are exposed to wide temperature fluctuations. Over the course of these fluctu-

ations, both the frames and the panels themselves expand and contract. However, because

they are made of very different materials, the expansion of the panels and the frames occurs

at different rates. This poses a problem: if the panels are attached directly to the frame,

then the mismatch of thermal expansion causes warping and stretching of the PV panels,

which limits the efficiency of the solar collection, and can disrupt the transmission of the

collected energy to the surface (see figure 2.1).

It is possible to avoid warping and stretching by adding springs between the PV/RF

panels and the frames (Figure 2.2). The following criteria are necessary for the functionality

of these springs. The springs should be small, as they take up some of the space that could

otherwise be used for energy collection, reducing the efficacy of the panels. In our case,
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Figure 2.1 Depiction of how stretching and warping occurs as the solar panels and frames
expand and contract as temperature changes. The left image shows how when the frame
expands more than the panel, the panel is put under tension and develops stress folds. The
middle image shows the panel and frame at original sizes. The right image shows how the
panel crumples and buckles when the frame shrinks more than the panel.

Figure 2.2 Depiction of how the introduction of springs keeps the panel flat and tensioned
even as the frame changes size relative to the panel. It can be seen that the springs absorb
the changes in size without passing the forces on to the panel.

we use strips of springs that are 1cm wide at rest to maximize energy collection area, but

retain enough room for functionality and the elimination of warping and stretching. They

also must have a large enough displacement range to cover the whole possible variance in

the width of the gap between the panel and the frame. The springs should use as little force

as possible to hold the panel flat so as to avoid damage to the panels. The springs also want

to be bi-directionally stretchy in the plane of the panels to add stability. They should be

thin and flexible so they can be rolled without damage and stowed in the compressed form

of the larger space solar module for launch. The spring must also be tunable due to the fact

that the exact material characteristics of the PV/RF films and carbon fiber frames are still

in development, and the subsequent force and displacements are not yet known.
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2.2 Kirigami

Kirigami is a cousin of origami that incorporates cuts as well as folds to create unique

patterns. Perhaps the most commonly seen kirigami is the paper snowflakes which are made

by folding a square into six equal parts and then cutting paper out of the sides and top to

form a repeating pattern on each section when unfolded. Another common application is

honeycomb packing paper, which is paper with small cuts that puffs when stretched and

serves as a protective packing layer when shipping goods similar to bubble wrap. However,

despite common encounters in everyday life, there has been limited academic study of the

uses and characteristics of various kirigami patterns. The most frequently studied kirigami

spring pattern is a “net-like multistable pattern” (Ai et al., 2021), which consists of a series of

horizontal cuts staggered like bricks. This pattern is referred to in this thesis as “net pattern”

for brevity and clarity. The net pattern has unidirectional stretch along the primary axis.

The net pattern is useful because it is simple to cut with laser cutters (Taniyama & Iwase,

Figure 2.3 The Net Pattern consists of a series of staggered parallel cuts which allow the
sample to be stretched along the in-plane axis perpendicular to the cuts. This stretching
involves out-of-plane buckling and deformation.

2019), optical lithography (Blees et al., 2015), or cutting plotters (Isobe & Okumura, 2016),

and is relatively easy to characterize due to its simplicity and limited variables.

Taniyama et. al. (Taniyama & Iwase, 2019) did an extensive characterization of the net

pattern and determined that it could be modelled by a series of springs along the stretch

axis. A series of springs is required for a couple reasons. First, the deformation along the
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Figure 2.4 The out-of-plane buckling the the Net Pattern kirigami springs is non-uniform
and can be modelled using a series of simple springs. Reproduced with permission from
(Taniyama & Iwase, 2019)

cuts is not uniform along the length of the pattern; the cuts near the chuck region, where the

sample is held for testing, experience less deformation than cuts near the center (see Figure

2.4). In other words, the sections of the spring near the middle stretch more than those at the

ends, as can be seen in Figure 4.2a. Second, the patterns experience a three-phase stretching

protocol, beginning with a linear “pre-buckling” phase in which the stretching is all in plane,

and is strongly affected by the material characteristics. The pattern then goes through a

buckle in which the segments between the cuts pop out of the plane to allow for greater

stretching. The third phase, the “post-buckling” phase, is “softer” or “stretchier” than the

pre-buckling phase and is also fairly linear. The third phase occurs when no more stretch

can be gained through buckling, and the intrinsic characteristics of the material once again

become dominant. This third phase can also be modelled linearly. The transition points

between each phase can be sharp, with a distinct buckling point, or smooth, depending on

the material and the style of cutting. (Taniyama & Iwase, 2019)(Isobe & Okumura, 2016).

Rafsanjani et. al. (Rafsanjani & Bertoldi, 2017) studied a variation of the net pattern that

uses an array of mutually orthogonal cuts (Figure 2.5), referred to henceforth as “square

net pattern,” to allow for stretching in multiple directions and more complicated buckling

patterns. This square net pattern is very useful, as it can function as a spring in any in-plane
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Figure 2.5 The Square Net pattern consists of mutually orthogonal cuts that allow the sample
to be stretched in any direction, as well as to buckle into a stable, stiff configuration.

direction and can lock into a fully buckled state in which it gains significant stiffness. A 127

μm thick sheet of this pattern in the buckled state can hold a 20 g weight suspended between

two pillars. This pattern seems to stretch most uniformly when pulled at a 45◦ angle to the

cuts. While these patterns are all very useful, the constraints of our project have forced us

Figure 2.6 The Square Net pattern in the stable, stiff buckled configuration. Reproduced
with permission from (Rafsanjani & Bertoldi, 2017)

to develop a new pattern specific to our criteria (see above in 2.1). The net pattern can

only stretch in one direction, and the square net pattern is too stiff for our uses. For these

reasons, we developed a modified cross pattern with a curve to allow for extra stretch. This
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pattern is called the “Double S Pattern” because the space between the cuts resembles two

perpendicular S shapes. This pattern meets most of our criteria but lacks tunability.

Figure 2.7 Image of the Double S Spring Pattern showing the chuck regions and the cross
shaped, angled cuts that are reminiscent of the Square Net Pattern. The white parts are the
remaining material and the black parts are where the material is removed.

In order to make this pattern tunable, we shift from looking at the cuts to the spaces

between them, and we find that the general Double S shape can be modelled by four identical

curves (see 3.1) each rotated 90◦ from one another. To model these curves, we had a couple

options. In general curves can be modelled with polynomials, however, for our purposes, and

due to the asymmetry of the curves we want, we would need to use high degree polynomials

rotated at an angle. Instead, we can use splines, which are piecewise polynomial functions,

each defined over a short region. Essentially, splines are multiple polynomial functions

connected end to end to create more complex geometries. We used B-splines with two fixed

endpoints and a movable “tuning” point to add tunability to this design, as will be discussed

in Chapter 3.

2.3 Kapton®

When deciding on an ideal material from which to manufacture the springs, there are a

number of criteria that must be met. First, the material should be lightweight to keep the

overall system weight down. Second, the material should also be flexible out-of-plane to

allow for rolling and buckling, while stiff in-plane to ensure that the stretching comes from

the spring pattern and not the intrinsic material characteristics. Third, the material should
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be relatively homogeneous for more consistency in stretching. Fourth, the material must

retain its properties over a wide range of temperatures. Finally, the material must be able

to survive in space long-term with minimal degradation.

The most difficult characteristics to achieve are retention of properties across temper-

atures and lack of degradation. Fortunately, these two characteristics often go together.

Many of the materials which are sufficiently durable throughout temperature changes and

long-term existence in space are metals and ceramics, which are not sufficiently light-weight

or flexible for our uses. (HeegerMaterials, 2024) This leaves polymers, which are repeat-

ing chains or arrays of smaller molecules called monomers. The polymers with the highest

stability across temperatures are polyimides, which are polymers of monomers that contain

imide functional groups, a collection of oxygen, nitrogen, and carbon atoms (Greene, 2021).

The repeating nature of polymers also creates high levels of homogeneity across a material.

Polyimides can be made in films as thin as 25 μm, which provides the necessary flexibility

out of plane.

For this project, we chose to use Kapton®, a 50 μm thin-film polyimide manufactured

by DuPont. We chose to use a 50 μm polyimide rather than a 25 μm polyimide for added

durability and stiffness in the springs. Kapton® is also relatively inexpensive and readily

available, making it ideal for both prototyping and manufacturing. The availability and

affordability of Kapton also enables the possibility of more widescale applications of the

kirigami research beyond the scope of this paper.

Due to a variation in published values for the Young’s Modulus of Kapton®, we decided

to experimentally determine the Young’s Modulus of the particular Kapton® (100 HN)

we used for these experiments. The first step was to examine Kapton® under an optical

microscope, which allowed for characterization of the thickness and homogeneity of the

Kapton®. Next, the Young’s Modulus of the Kapton® was measured using an Electroforce

Universal Testing Machine to measure force and displacement. Force and displacement

were then converted into stress-strain graphs based on the initial dimensions of the sample
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Figure 2.8 Plot of Stress-Strain Curves for solid Kapton® samples. The slope of the linear
regression of the average of all curves is 3.98 GPa, which is in agreement with the literature
values for the Young’s Modulus of Kapton®.

Figure 2.9 Annotated optical microscope image of the thickness of Kapton®.

measured. For these measurements, 15 tests were conducted on three different samples,

each measuring approximately 20x100mm, with the force directed along the long axis. A

12



linear regression was performed on the average stress-strain graph compiled from all trials

to find the Young’s Modulus. We found the Young’s Modulus to be 3.98 GPa based on

this method (see Figure 2.7). This is not in agreement with the manufacturer’s data from

DuPont (DuPont, 2022), which states Kapton® has a Young’s Modulus of 2.76 GPa, but

is in agreement with the paper ”Study on Young’s modulus of thin films on Kapton® by

microtensile testing combined with dual DIC system” by Wei He et. al. (He et al., 2016). It

is possible that this difference arises due to the fact that it is not clear within the DuPont

data sheet whether they are reporting a Young’s modulus for 25μm thick or 50μm thick

Kapton®. This would explain why the DuPont value is lower, as a thinner sheet of material

would have a lower Young’s Modulus.
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Chapter 3

Methods

Science is fun. Science is curiosity. We all have natural
curiosity. Science is a process of investigating. It’s posing
questions and coming up with a method. It’s delving in.

Sally Ride

3.1 Developing Patterns

Figure 3.1 Left: The nine b-spline variations that were made into spring patterns for these
experiments, all with fixed start and end points, and a variable middle control point. Right:
an example of a b-spline made into a spring pattern with chuck regions. The spring region
and each of the chuck regions are 1x6 cm, so the total pattern is 3x6 cm.

Once we decided to use splines, we had to choose what kind of spline to use. By definition,

a spline is a piecewise polynomial function that is continuous across the function itself, as
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well as the first and second derivatives. This provides a high degree of smoothness which

is important for our project because it reduces the likelihood of weak points in the springs.

Historically, the term spline arises from shipbuilding, in which long pieces of wood are bent,

and will naturally form a smooth curve with the lowest potential energy. If the wood is

only fixed at the ends, it will form a smooth, symmetrical curve. However, if you add a

post two thirds of the way to the right side of the piece of wood, and bend the ends to the

same points, the piece of wood will form a smooth curve that is skewed to the right. In

mathematically generated splines, the control points serve much the same purpose as the

post in the shipbuilding example.

There are a number of different types of splines, primarily defined by the degree of

the polynomials that comprise them. The most common splines use cubic polynomials for

simplicity and to reduce computational time. Within cubic splines, there is variation in how

the control points are defined. Some splines, such as Hermite and Catmull-Rom splines,

have control points defined by position and the derivative of the curve at the control point.

This leads to continuity in the first derivative, but can sometimes have breakdown in the

continuity of the second derivative. These splines are also more complicated to tailor to

varying control points. Bezier splines are defined only by the position of the control points,

and the curve is evaluated such that it fits completely within the polygon created by the

control points, but will not pass through all the control points. However, Bezier splines can

also have discontinuities in the second derivatives. This leaves natural cubic splines and B-

splines. Both of these types of splines have continuous first and second derivatives, but have

different control points. Natural cubic splines are more similar to Hermite and Catmull-Rom

splines in that the generated curve will pass precisely through all points. However, changing

any point can have significant ramifications on the curve as a whole. B-splines are like

Bezier splines in that they are contained within the polygon defined by the splines, but they

pass much closer to the control points, and the nearness can be increased by using repeated

control points to weight the function. B-splines are also slightly more consistent in behavior
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when moving the control points. (CMU, n.d.)

We chose B-splines over natural cubic splines because we are primarily concerned with

the variation between similar spline patterns, rather than the exact values of the spline, and

B-splines better serve that purpose. We generated the splines in MATLAB (see full code

in Appendix B) using the bsplinepolytraj function, which accepts control points, a time

interval, and time samples (Mathworks, 2024). This function then returns the trajectory

positions, velocity, acceleration and polynomial coefficients of the B-spline. We only used

the trajectory positions in our spline generation. We defined the splines using four control

points, one fixed at (0,0), two fixed at (2.5,0), and one variable. The (2.5,0) control point is

repeated to weight the spline slightly in the direction to improve tessellation of the individual

springs into a grid. Weighting the endpoint helps the generated spline to end at precisely

(2.5, 0). The third point is allowed to vary in both x and y to create variations in the depth

of curvature and total ribbon length. Once the spline has been generated, we rotate the

spline about the origin to create four evenly spaced arms. Next, we use the offsetCurve

function in MATLAB to create width on each arm, based on a variable scalar. After each

arm has width, the inside ends of each arm are connected using small symmetric splines to

create a smooth fillet to prevent tearing at the joint. Once the individual spring has been

created, it can be tessellated into the desired configuration, generally 2x12 spring instances,

and chuck regions are added to provide a place for even application of force (see Appendix

A for detailed images).

When deciding of possible spring arm ribbon widths, we were bounded on both sides by

non-negotiable criteria. The minimum ribbon width, 0.6 mm was chosen because springs

thinner than 0.6 mm became too fragile to work with effectively. The maximum ribbon

width of 0.8 mm was chosen because that is the widest the spring arms can be without

overlapping on the more densely tessellated patterns such as (3.6, 4.0) (see Figure 3.2).
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Figure 3.2 (3.6, 4.0) pattern with 0.8 mm spring arm width, showing that any increase in
width would lead to overlap of lines.

3.2 Numerical Analysis Using Abaqus

Abaqus is a software suite used for finite element analysis (FEA) and computer aided engi-

neering. FEA is a technique used for modelling complex geometries by breaking them down

into smaller elements and applying mathematical equations based on the laws of physics to

each part. Here we are using FEA to model the application of force to our samples. We can

envision this working in its simplest method as a collection of strings tied end to end. When

the first string is pulled, it pulls on the second string, which pulls on the third string, and

so on until the end is reached. In this way, we can estimate the behavior of the combined

string based on the behavior of each of the individual springs.

Our first step was to import the .dxf file created using Matlab into Abaqus as a sketch

file, which can then be used to generate a part. Next, we used a Python code (see code in

Appendix B) to generate the material and section parameters with Kapton® modelled as a

homogeneous shell with a thickness of 50 μm, density of 1.42 g/cc, Young’s Modulus of 3.98

GPa, and a Poisson’s Ratio of 0.34 (DuPont, 2022). Next, the created part is assigned to

the homogeneous section, and the chuck regions are partitioned from the springs for better

meshing. Meshing is the process by which the larger part is divided into the finite elements

that the software will use for computing. It is necessary to have small elements in order

to accurately model the large-scale behavior, but the maximum number of elements is also

defined by the limits of the available computing power. The ”seed” is a metric of how large

each element is, and the curvature parameter is essentially a measure of how long of an arc
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is allowed in any given element. The chuck regions are meshed using a global seed of 0.8, a

curvature parameter of 0.01, and a structured quad mesh. The springs are meshed using a

local seed of 0.5 and curvature of 0.007, with a free quad-based mesh. The term ”quad mesh”

indicates that the elements are each quadrilaterals, rather than triangles. The chuck regions

have regular quadrilateral elements (squares), while the springs use quadrilaterals of varying

shapes and angles. These parameters are based on the paper “Wrinkled Membranes Part

III: Numerical Simulations” by Wong and Pellegrino (Wong & Pellegrino, 2006), who also

developed the protocol below for the buckling step, which was modified for this application.

The part is then used to create an assembly on which the analysis will be run.

A second piece of Python code is used to generate three separate steps. The “Initial” step

sets up the base conditions, in this case a set of boundary conditions that fix the right edge of

the sample “encastre”, or fixed in terms of both displacement and rotation. The next step is

a “Buckle” step, in which we propagate the boundary conditions from the “Initial” step and

add a shell edge load of -0.01 N to the left edge of the sample. We then use the Lanczos solver

to request 10 eigenvalues greater than 0. The Lanczos solver is a method of generating the

eigenmodes and eigenvalues of a system, which show us the natural vibration frequencies of

a system. In this case, the eigenvalues show us the most likely places for buckling, and allow

us to determine where to seed imperfections into the sample, as imperfections are necessary

in order for buckling to occur. The eigenvalues from the Lanczos solver are imported into the

model as a “File Imperfection” with an imperfection scalar of 0.01. This scalar determines

the size of the imperfections relative to the sample itself. The third step is the “Load” step,

where we once again propagate the “Initial” boundary conditions and add another boundary

condition to pull the left edge of the sample 3-6mm to the left, depending on the sample.

After the “Load” step, data is taken from all points along the left edge of the sample, and

force is collected as a sum of the reaction force on all points, while displacement is collected

as the average displacement for all points. It is important to note that the “Buckle” and

“Load” steps cannot be run at the same time – the “Load” step must be suppressed to run

18



the buckling analysis, and the “Buckle” step must be suppressed to complete the “Load”

step. (see video of ”Load” step in A).

Figure 3.3 Image of the modelled sample in a fully buckled state, showing how the ribbon
arms twist out of plane to facilitate buckling.

3.3 Experimental Testing

3.3.1 Laser Cut

Initially, our patterns were laser cut, as per previous work by Taniyama and Rafsanjani.

Laser cutting is a very efficient way of cutting detailed patterns, as the laser head can move

quickly and there is little risk of tearing or dragging the sample. Laser cutters also cut

effectively through Kapton. Commercial laser cutters also accept .dxf file types which have

high precision and high reproducibility. These patterns have been cut on multiple laser

cutters (GCC LaserPro Spirit GLS and Universal Laser Systems Inc. Model: XLS10), and

it was determined that it is ideal to cut Kapton at high speed, with the minimum amount

of power necessary to cut cleanly through the sample. For the GCC LaserPro Spirit GLS,

the optimal settings were 95% speed and 100% power. The high speed is important because

it reduces energy dumping into the sample which causes melting and burning effects (see fig

3.4). Once the patterns are cut, acrylic or 3d printed “handles” are epoxied on to the chuck

regions to provide a stiff surface to grip during experiments for an even distribution of force.

19



Figure 3.4 Optical Microscope image showing the burning and melting effects from the laser
cutter, with melting spreading 123 μm into the sample, and burning of 40 μm.

These handles measure 1x6 cm to match the dimensions of the chuck region.

Figure 3.5 Left: Photograph of Double S Pattern with acrylic handles epoxied on to both
chuck regions. Right: Photograph of B Spline Pattern with 3d printed handles epoxied on.
These patterns are all 3x6 cm.

Burning

The burning and melting have a number of notable effects. First, almost 200 μm of material

are burnt off the edges of the spring arm. This reduction in width leads to a reduction in

the stiffness of the springs, in this case by almost 50%, as can be seen in Figure 3.7 and 3.8.

The burning also creates a ”Dog Bone” effect, where the edges of the Kapton® become
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Figure 3.6 Optical microscope image of a 0.8 mm (800 μm) spring arm that has been
burnt down to about 615 μm. This image also shows some microscale imperfections in

the Kapton®.

Figure 3.7 Modelled (orange) and experimentally collected (black) data for the Double-S
pattern with all parameters equal showing the initial buckle at about 0.01 cm, a stable
region from 0.025cm to 0.1 cm, and a final exponential growth region.

thicker due to melting and a movement of material during laser cutting, similar to how

candles become thicker as wax melts and resolidifies. This effect can be seen in Fig. 3.9.

The Dog Bone effect leads to increased stiffness in the springs, as it increases the force

needed for the springs to buckle because the added ribbon width resists buckling. Given

that the Burned Model in Fig. 3.8 was modified such that the width was reduced but no
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Figure 3.8 Effect of changing the modelled width to match the burned width of the exper-
imental pattern, rather than the input to the laser cutter. Modelling the pattern with the
burn effects leads to a model that has results within 4% of experimental values

Figure 3.9 Optical microscope image of the ”Dog Bone” effect that occurs during burning,
in which the edge of the Kapton® becomes about 10 μm thicker than the rest of the sheet.

changes were made to account for the Dog Bone effect, it seems that the reduction in width

is the dominant effect. The burning and melting has a final effect, which is to reduce the

homogeneity of the Kapton®. This occurs to some degree throughout the entire pattern, as

can be seen in Fig. 3.6, but is much more pronounced around the edges, as can be seen in

Figures 3.4 and 3.10.
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Figure 3.10 These images show how the burning and melting effects lead to a very irregular
edge on the spring arms, with what appear to be entire chunks that have become brittle and
broken off.

3.3.2 Knife Cut

In order to compensate for the burning that occurred while using the laser cutter, we also

cut patterns using a Cricut Joy commercial cutting plotter. For this machine, the files

were uploaded as .jpg files (see Figure 3.11), as the .dxf files were too large for the Cricut

software. This importation process caused slight changes to the patterns, but these were

minimized by filling in the image of the pattern before importing. This infill of the pattern

was necessary, because the software is designed such that it will cut anywhere black and

white are touching, so if the pattern is imported as lines, the plotter will cut on both sides

of the lines, significantly reducing the width of the pattern and causing some warping of the

pattern. The same 1x6cm epoxy handles were attached to these patterns, as can be seen in

Fig. 3.4. There was an unexpected error that occurred during this process however, in that

by uploading the files as .jpgs, the linewidth becomes relevant, and the knife cut patterns

gained approximately 0.1 mm on either side of the arms; as a result, the patterns that were

nominally 0.6 mm became 0.85 mm, and the 0.8 mm patterns became 1 mm. However, it

was necessary to have some linewidth in order to create smooth infill and maintain the exact

pattern edges. This led to an issue where two B-spline variations failed, as the increased

width led to overlap of adjacent arms. In future work, there are a couple possible solutions

to this. First, higher end commercial cutting plotters can accept larger .dxf file types, which

23



Figure 3.11 Example pattern with a black infill for importation to the Cricut cutter. In this
case, the white will be cut away and the black will remain.

would increase precision and avoid this problem. Second, it would be possible to edit the

designs to have reduced width such that they became the correct size with the inclusion of

the linewidth. This could be somewhat tricky, as .jpg files do not have an intrinsic size, as

.dxf files do, so it would take some experimentation to perfect the sizing. There is also an

added element of inconsistency in that .jpg files must be resized to the correct 3x6 cm overall

dimensions, and inconsistencies between the spring arm widths across patterns indicate that

variations of up to 30 μm besides the 0.2 mm general increase occurred during the importation

process.

Overall, however, the cutting plotter created patterns that are much more cleanly cut

and retain much more of their homogeneity than those cut with the laser cutter. As can be

seen in Fig. 3.10 (left), the edges are smooth and even, although there is a slight roll to the

edges. However, the roll cannot be seen in an edge on view (Fig. 3.10 right).

3.3.3 Tensile Testing

For our tensile testing, we used an Instron Universal Testing System 34SC-5 (single column)

with a 100 N load cell. For each test, we insert the sample into the custom top chuck (see

appendix for details), and then clamp it into the bottom chuck with no tension. Next, we
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Figure 3.12 Optical Microscope images of patterns cut using the commercial cutting plotter,
showing the cleanliness of the cuts (left) and the homogeneity of the edges (right). Note:
there is some soot on these patterns as they were stored with the laser cut patterns.

instruct the Instron to slowly increase the displacement, and measure both the displacement

and the accompanying force. For each sample, we continue to stretch until the pattern breaks

or the force levels off, indicating imminent breakage.
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Figure 3.13 Image of the set-up for testing using the Instron Universal Testing System,
showing the specialized top grip, sample, and bottom chuck.
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Chapter 4

Results and Discussion

Scientists do not discover in order to know, but rather,
they know in order to discover.

Alfred North Whitehead

4.1 Abaqus Results

Figure 4.1 The nine B-spline variations that were made into spring patterns for these exper-
iments, all with fixed start and end points, and a variable middle control point.
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The results from the numerical modelling will be broken down into three subsections:

an analysis of the effects of changing the ribbon width of the spring arms, an analysis of

changing the x-coordinate of the splines, and an analysis of changing the y-coordinate of the

splines. The x-coordinate represents the horizontal shift of the control point of the spline,

as seen in Figure 4.1. This primarily has the effect of reducing the symmetry of the spline

by skewing the peak of the curve to the right. Increasing the x-coordinate also leads to a

shallower slope on the leading side of the curve, and a steeper slope on the trailing side. The

y-coordinate represents the vertical shift of the control point. An increase in the y-coordinate

leads to an increased depth of curvature and a longer arc length. The effects of each of these

changes are intertwined but can be analyzed individually by carefully controlling the other

variables.

4.1.1 Ribbon Width

Figure 4.2 This graph shows the variations in spring behavior between the (2.0, 2.4) pattern
spring at 0.6mm ribbon width and 0.8mm ribbon width.

We first analyzed the effects of changing the ribbon width by choosing one spline, in

this case the spline defined by the control point (2.0, 2.4). It can clearly be seen in Figure

4.1 that an increase in ribbon width leads to an increase in the amount of force needed

to displace the spring a given distance. For instance, to pull the 0.6 mm spring 0.5 mm
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would require just under 1 N of force, whereas the 0.8 mm spring would require 2 N. This

raises the question how the two curves are related. This was evaluated by fitting a 7th

degree polynomial to each curve, and then optimizing a transformation from one to the

other. We used a transformation of the form PB(x) = c ∗ PA(a ∗ x + b) + d [Eqn. 4.1.1]

and performed an error minimization in Python (see B). We used 7th degree polynomials

because this was the degree that led to the best matching of the curves without overfitting.

The transform was chosen because it provides the most information about the relationship

between the two curves, as it accounts for changes in four dimensions: linear shifts in x and

y, and scalar transforms in x and y. For these two patterns, we determined a relationship

of P0.6mm(x) = 0.405 ∗ P0.8mm(0.999 ∗ x – 0.001) + 0.113 with a final mean squared error of

9.18 ∗ 10–4 (Figure 4.2). This relationship is simpler than expected. The primary effect is

Figure 4.3 This graph shows the transformation optimization of the 0.8 mm (2.0, 2.4) spring
pattern into the 0.6 mm version.

a reduction in necessary force by 60%, with an additional 0.113 vertical shift. The a and b

parameters here have almost no effect on the transformation. In a sense, this means that

this transform could be approximated by a simple scalar of 0.4, as can be seen in Fig. 4.3.

This makes sense, as intuitively, an increase in ribbon width leads to more material that

must be deformed in order to stretch, and therefore greater stiffness.

Next, we repeated this optimization process with the (2.0, 3.2) and (2.0, 4.0) spring

patterns and found the following relationships:
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Figure 4.4 This graph shows a simplified transformation between the 0.6 and 0.8 mm (2.0,
2.4) springs using a 0.4x scalar.

P0.6mm,(2.0,3.2)(x) = 0.502 ∗ P0.8mm,(2.0,3.2)(0.882 ∗ x + 0.039) – 0.022

Mean Squared Error = 6.26 ∗ 10–5

P0.6mm,(2.0,4.0)(x) = 0.528 ∗ P0.8mm,(2.0,4.0)(0.608 ∗ x + 1.635) – 0.207

Mean Squared Error = 2.097 ∗ 10–4

Interestingly, these relationships seem to become less simple as the y-coordinate increases,

with a, b, and d gaining more prominent effects. However, if we compare the mean squared

errors for the relationship between the actual 0.6 mm springs and ones estimated with a

transformation of the form PA = c ∗ PB, [Eqn. 4.1.2] where c is the same as in the

equations above, we get the these results:

Error(2.0,2.4) = 0.0099, Error(2.0,3.2) = 0.0877, Error(2.0,4.0) = 0.0144

Unfortunately, these relationships do us little good in generalizing the relationships

between ribbon widths, so we experimented with approximating all the 0.6 mm patterns as

scaled by the average of our 3 c values, 0.478, compared to the 0.8 mm spring patterns.

This gave us the following errors:

Error(2.0,2.4) = 0.0211, Error(2.0,3.2) = 0.0569, Error(2.0,4.0) = 0.0105

Interestingly, this actually reduces the error for the (2.0, 3.2) and (2.0, 4.0) spring patterns.

In later sections, we will use this averaged scalar for comparisons. It should be noted that
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Figure 4.5 These graphs show the mean squared error between 0.6 mm modelled springs and
estimations of the spring based on a scaled version of the 0.8 mm spring pattern using the
relationship PA = c ∗ PB. c values are taken from Equation 4.1.1.

this relationship was only established firmly for (2.0, y) patterns, but due to the smallness

of changes when varying x, we will assume this relationship holds true for all patterns.

The ribbon width of the spring arms, for both modelled and experimental patterns,
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Figure 4.6 These graphs show the mean squared error between 0.6 mm modelled springs and
estimations of the spring based on a scaled version of the 0.8 mm spring pattern using the
relationship PA = c ∗ PB. c values are averaged to get 0.478.

increase the stiffness of the springs. This makes sense in all three phases of the spring

curve. In the pre-buckle phase, there is more material that needs to be moved and strained

before the spring will buckle, leading to a higher force but similar displacements for the

buckling point. This is seen in both the model and experimental data. In the working

region, the average slope is steeper, indicating a stiffer spring, which again intuitively
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makes sense, as there is more material resisting the stretching. In the third phase, all

ribbon widths appear to asymptote towards the same slope, which makes sense because in

that region the stretching is primarily dependent on material characteristics, which is the

same across all patterns. Overall, a decrease in ribbon width from 0.8 mm to 0.6 mm leads

to 0.478x the force required for stretching, which is in agreement with our intuitive

hypothesis that wider springs require more force to stretch.

4.1.2 Spline Variations

Figure 4.7 Modelled Force vs displacement graphs for 0.8 mm permutations of three varia-
tions each of the x and y coordinates of the B-spline control point.

For analyses of the x- and y- coordinates, we will focus primarily on what we will call the

”working region”. This refers to the second section of the spring curve, where the slope is

shallower. This region is of the most interest, because it is the region in which the springs

will be used. This region is defined based on the area from the point where the second

derivative equals zero to the point with the largest value of x where the second derivative
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equals 2.5. These parameters were developed in an attempt to mathematically define the

region of the curves that have a positive curvature, but also still have a more shallow slope,

indicating that the stretch is still occurring within the kirigami pattern, rather than the

material itself. It is worth noting that the second parameter is slightly more arbitrary, and

could be varied depending on the exact characteristics desired. This is important to reduce

the material degradation that can occur through repeated stretching and compression.

X-Coordinate

Changing the x-coordinate of the splines shifts the peak of the curve horizontally, as can be

seen in the bottom of Fig. 4.7. It can be easier to visualize this as a shift in the angle of

the center-most line in the spring pattern, which has a negative slope for smaller x values,

is vertical for medium values, and a positive slope for large values. As can be seen in

Figure 4.8 Variations in the ”x” parameter of the B splines leads to slight changes in the
curve shape. The boxes show the ”working range” of the springs, or the region in which the
springs behave most linearly.

Figures 4.6 and 4.7, varying the x-coordinate has only a small effect on the force required
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to stretch the spring. The primary effect is a flattening of the curve in the working region,

and a subsequent steepening in the third, post-buckling, phase. This has two ramifications

for our project. First, a small reduction in the working region, in both force and

displacement, which informs the selection of spring pattern for a given application. The

second comes the flattening of the curve, in that, if emphasized, this has the potential to

create a spring that could exert an almost constant force across a displacement range. This

can be seen most clearly in the (3.6, 4.0) spring pattern which has a shallow slope from 0.5

to 1.75 mm. It is postulated, based on the data from Section 4.1.1 that this effect would be

further pronounced in thinner springs.

Y-Coordinate

Figure 4.9 Variations in the ”Y” parameter of the B splines leads to significant changes in
the curve shape, the force required, and the distance the springs can be stretched. The boxes
show the ”working range” of the springs, or the region in which the springs behave most
linearly.

Variations in the y-coordinate have a much more pronounced effect than variations in the
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x-coordinate. We can see from the boxes in Figure 4.9 that having a smaller y-coordinate

maintains a similar maximum force, but decreases the working range significantly in

displacement. In other words, the spring requires more force to stretch, but can stretch less

far. This means that while the spring can handle larger applied forces without breaking,

the forces must be exerted over smaller distances relative to a spring with a larger

y-coordinate. Increasing the y-coordinate at first glance seems to have a similar, if more

Figure 4.10 Graph showing the difference in effects between changing the ribbon width and
varying the y-coordinate. It can be seen that, while the effects appear quite similar, varying
the y-coordinate has a much larger effect than varying the spring ribbon width.

pronounced effect as decreasing the ribbon width, so we began our investigation of

variations in the y-coordinate with the same analysis performed in Section 4.1.1. From this

we got the following relationships:

P(2.0,3.2)(x) = 38.94 ∗ P(2.0,2.4)(0.006 ∗ x + 0.695) – 103.0

Mean Squared Error = 0.0021

P(2.0,4.0)(x) = 304.0 ∗ P(2.0,3.2)(0.0001 ∗ x – 0.255) + 354.0

Mean Squared Error = 0.0020

P(2.0,4.0)(x) = 14.02 ∗ P(2.0,2.4)(0.004 ∗ x + 0.718) – 38.15
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Mean Squared Error = 0.0005

These equations cannot be estimated to be dependent only on c, due to the smallness of the

a values, The small a value serves to elongate the curve in the x direction. For example, if

we have a simple polynomial, x2, and we transform it into (0.5 ∗ x)2, then each y-value will

appear at twice the x-value it originally appeared at. This can be seen in how the x2 curve

intersects with y=4 at x=2, whereas the (0.5 ∗ x)2 curve intersects with y=4 at x=4.

Likewise, the curve (0.1 ∗ x)2 would intersect with y=4 at x=20. We can then extend this

relationship to our equations here to see that our transformed curves would intersect with

a given y-value at an x-value of 400-1000 times larger that the original value. There is also

not a clear relationship between the transformations between the spring patterns. For these

reasons, we attempted to do a different fit, of the form PA = c ∗PB [3] to test whether such

a fit has small enough error to be useful. As can be seen in Figure 4.11, the errors in the

simple fit are < 3%, which means that this approximation is reasonably accurate.
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Figure 4.11 These graphs show the transformations between the three curves shown in Figure
4.9, using the fit in Equation 4.1.2.

38



4.2 Experimental Results

All experimental results in the following section are from knife cut springs. It is also

important to note that the nominally 0.6 mm springs are in reality on average 0.85 mm,

and the nominally 0.8 mm springs are actually 1.0 mm in width. This was discussed

previously in depth in Section 3.3.2. For the remainder of this section, the springs will be

referred to by their nominal width. While this does limit our ability to compare directly

between the model and experimental data, we will make use of the previously defined

ribbon width relationship to transform the springs for comparison. In order to do these

transformations, we have fit 7th degree polynomials to each of the experimental curves.

The original curves can be seen in Appendix A.

Figure 4.12 Experimental Force vs displacement graphs for 0.8 mm permutations of three
variations each of the x and y coordinates of the b-spline control point.

An initial qualitative analysis of the experimental data reveals some interesting trends.

The 0.6 mm springs appear to be mostly in agreement with the model, with the correct

three-phase shape and clustering of patterns with the same y-coordinate. However, there

are some discrepancies worth noting - primarily that the (2.0, y) patterns have a less

defined shape than expected, and that the (2.8, 2.4) and (3.6, 2.4) patterns are flipped

from where the model would expect them to be. We predict that the (2.0, y) patterns seem
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Figure 4.13 Experimental Force vs displacement graphs for 0.6 mm permutations of three
variations each of the x and y coordinates of the b-spline control point.

to be more linear because the splines are getting straight enough that they are approaching

a square lattice, which does not buckle, and would stretch linearly at the same rate as

Kapton®. The second discrepancy, that the (2.8, 2.4) and (3.6, 2.4) patterns are flipped,

we would expect is an artifact of data collection, that the sample was put into the Instron

with more slack, and therefore the beginning of the data is the stretching occurring

without tension. However, this flip also occurs in the 0.8 mm patterns, and is not

satisfactorily resolved by a lateral shift of the entire curve, as the slope is also

approximately the same between the two patterns. This feature requires further

experimentation to explain. The 0.8 mm patterns are less in agreement with the modelled

data, and show less distinct three-phase behavior. We believe this is because the width has

been increased to a point where it begins to interfere with smooth buckling. This can be

seen in how the buckling point is shifted significantly up and to the right, indicating that

the sample requires both more force and more displacement in order to buckle. While this

behavior could be useful in some scenarios, for the use case of the Space Solar Power
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Project, this behavior is contrary to our goals. For this reason, we will mostly focus on the

0.6 mm spring patterns. The scaling in Figure 4.14 indicates that the scaling factor for

Figure 4.14 Force vs displacement graphs for 0.8 mm modelled and 0.6 mm experimental
permutations of three variations each of the x and y coordinates of the b-spline control point.
In this plot, the experimental curves are scaled down by 0.5x.

ribbon width is not perfectly linear based on difference in width, as there is a 0.478x

difference between 0.8 mm and 0.6 mm springs, and another approximately 0.5x difference

between ∼0.9 mm and 0.8 mm springs.

It is complicated to determine how in agreement the model and the experimental data is

due to the high uncertainty created by a combination of generally overly wide springs and

inconsistent spring widths. However, the analysis of the change in behavior of the springs

with changing ribbon width indicates that the discrepancies between the modelled and

experimental data are likely occurring from the larger ribbon width rather than an

alternative complication. In support of this conclusion is the similar 3-phase curve shape

between the models and the fact that a ribbon width transformation of the type described

in Section 4.1.1, with a 0.478 scalar brings the 0.6 mm experimental and 0.8 mm modelled

patterns into reasonable agreement. There is some disagreement remaining, particularly in

the (x, 2.4) spring patterns, which lose some of the definition between the second and third
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phases of the curves, likely due to the spring segments becoming stiffer, and therefor more

similar to the Kapton® itself.

In some ways, this discrepancy is useful, because it informs us that there is a limit to the

stiffness of the springs, at least while they remain at the 1 cm size. Intuitively, this makes

sense as well, because splines with a small y-coordinate will approach straight lines, which

cannot by nature buckle, and therefore will not display the spring-like behavior we are

studying. There are also divergences between the buckling behavior between the model and

experimental data. The experimental data has the buckle occurring significantly later than

the model, which indicates some physical factor that resists buckling. This delayed buckle

occurred only in knife cut spring patterns, which could arise from a number of possibilities,

the two most prominent being that the ragged edges from the laser cutter create

imperfections that incentivize buckling, or that the slight roll that appears in the knife cut

patterns resists buckling. The rolling in the knife cut patterns appears in microscope

images to be less pronounced than the dog bone effect in the laser cut patterns, which

would indicate that the rolling is not the primary cause, however it is possible that

increased fragility in the laser cut springs counteracts the added stability of the thickened

edges.
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Chapter 5

Library

I am driven by two main philosophies: know more today
about the world than I knew yesterday and lessen the
suffering of others.

Neil DeGrasse Tyson

The library can be used to select springs for given use cases. For example, let’s say that we

have a theoretical solar tile system in which the frame is made of a very special carbon

fiber that has a thermal expansion coefficient (CTE) of zero, and the solar panel is made

up entirely of Kapton®, which has a CTE of 20 ppm/K (DuPont, 2022). This CTE means

that if you had a million meters of Kapton®, and you raised it by one degree Kelvin, it

would become 1 million and 20 meters long. However, our tile isn’t one million meters

long, it’s 10 cm1, and our temperature range isn’t one degree, it’s about 400 K to 115 K.

This is the temperature range experienced by the International Space Station, and is a

reasonable approximation for what the Space Solar Project will experience (ESA, 2021). In

this case, across the entire temperature range, the solar panel will expand linearly by 0.57

mm. Because there are springs on each side, each spring will have to absorb half that

distance, or 0.285 mm. Let us further assume that our solar panel cannot handle more

1It is worth noting here that our experimental and modelled springs are only 6 cm, so a scaling factor
should be implemented depending on the final size of the tiles. Preliminary research indicates that the force
would increase linearly for longer springs.
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Figure 5.1 This table shows the locations and dimensions of the working region for each
spring pattern, based on modelled data from Abaqus. It is easy to see in this table the
following trends: force decreases and displacement increases as ribbon width increases, both
the displacement and force ranges increase as the y-coordinate increases, and there is a slight
decrease to both force and displacement as the x-coordinate increases.

than 2 N of force without breakage. This force is somewhat arbitrary, and will depend on

the exact design and materials of the solar panels. If we consult our table, we can see that

all of our springs can nominally handle a displacement range of 0.285 mm. However, the

(x, 2.4) patterns have a displacement range that is only slightly greater than what we need,

so to account for error or unforeseen circumstances, we should not choose those patterns.

Next, we need to narrow the remaining patterns to those whose working ranges cap out

below 2 N. This gives us the (2.0, 3.2) 0.6 mm pattern, and the (2.8, 3.2), (3.6, 3.2), and

(3.6, 4.0) 0.8 mm patterns. Out of these patterns, we can select the (3.6, 3.2) 0.8 mm

spring as the optimal pattern, because it has both the smallest maximum force, which

reduces the risk of accidentally applying too much force, and the smallest displacement

range, which limits unnecessary excess.
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Chapter 6

Conclusion

Every great advance in science has issued from a new
audacity of imagination.

John Dewey

Through the course of this project, we succeeded in our main goal – to create a library of

spring patterns that could be used for a variety of use cases. We also established a set of

relationships describing what happens when varying different parameters such as cutting

method, ribbon width, and x- and y-coordinate positions.

In terms of cutting methods, we investigated using laser cutters and commercial plotting

cutters (knife cutting). The laser cut patterns have losses due to burning of up to 200 μm

of material. This loss can only be partially limited by purposefully cutting wider patterns,

as the ribbon width is limited in order to avoid overlap of the spring arms. This method

also introduces non-homogeneity into the Kapton® through melting and soot deposits,

and creates a dog bone effect in which the edges of the Kapton® become thicker by about

10 μm. However, the laser cut patterns buckle very smoothly. The knife cut patterns were

about 200-250 μm wider than intended, but this was due to software issues rather than an

innate issue of the methodology and so could be fixed computationally. The knife cut

patterns are much more homogenous, but do not buckle as smoothly as the laser cut
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patterns. Further research in this area would involve testing laser cutters with different

wavelengths, powers, and speeds to see if smaller losses can be achieved. It would also be

worthwhile, especially if investigating a single pattern at length, to create a die to cut the

pattern with efficiency and consistency.

For ribbon width, we confirmed the intuitive idea that wider springs require more force to

stretch. We also discovered that an increase in spring arm ribbon width reduces the

working region displacement range of the springs. Through numerical transforms, we

established that 0.6 mm springs require 0.478 times the force as 0.8 mm springs, and 0.8

mm springs require approximately half the force as 0.9 mm springs. We further established

that springs wider than 0.9 mm start to behave more like a solid material, and do not

buckle smoothly, or have the three well-defined phases that we are looking for. Further

research should be done on more widths of springs to develop a more clearly defined

relationship between changes in ribbon width and required force.

Increasing the x-coordinate of the splines leads to a reduction in both the force and

displacement ranges of the working region. It also creates a flatter working region, which

has the potential to, if emphasized, create a spring that exerts an almost constant force

regardless of displacement. This should be investigated further. Increasing the

y-coordinate of the splines leads to an increase in the force and displacement ranges of the

working region. This is a much more significant effect than those that arise from variations

in the x-coordinate, especially in terms of the displacement range. In large part, this is due

to the increase in the y-coordinate creating spring arms that are physically longer and so

can stretch further. We were unable to define conclusive mathematical relationships for the

differences in the curves upon varying the x- and y-coordinates. Further research would be

benefited by investigating the mathematical relationships further, as well as by testing

other pattern variations to confirm the qualitative relationships.

While this project has had many successes, and much has been learned about the behavior

of these B spline springs, there is also much future work to be done. The spring patterns
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need to be tested for durability to see how many times they can stretch within the working

region before degrading to establish an estimated lifetime for the springs. This research

could also help to develop a more well-defined upper boundary for the working region.

Additionally, the behavior of the springs under shearing loads should be modelled to ensure

that the springs are not exerting any torque on the solar panels. Finally, the spring

behavior should be tested at a variety of temperatures to ensure that they function

properly through the temperature changes they would experience in space.

47



Appendix A

Raw Data and Buckling Video

This appendix contains the raw experimental data plotted as force vs. displacement. It

also contains an image series showing how the B-spline spring patterns are built from a

single curve. There is also an attached video showing a detailed model of how the Double-S

spring pattern buckles during stretching. Experimental Data Plots Image Series showing

Figure A.1 Experimental Force vs displacement graphs for 0.8 mm permutations of three
variations each of the x and y coordinates of the b-spline control point.
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Figure A.2 Experimental Force vs displacement graphs for 0.6 mm permutations of three
variations each of the x and y coordinates of the b-spline control point.

how the patterns are built from individual splines.
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Figure A.3 A visual step-by-step of the pattern development outlined in 3.1
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Link to Video of Abaqus ”Load” Step: Abaqus Video

https://drive.google.com/file/d/1G5D8gPKNf9WzTnj3c3ifFGHYvLprCMiB/view?usp=sharing
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Appendix B

Code and Files

This appendix contains the Python code for the Abaqus modelling and the Matlab code for

the spline development under the ”Code” subheading, and the code for data manipulation,

plot-making, and polynomial fits are in Google Colaboratory files under the ”Files”

subheading. All the original data is also contained in a Google Sheet under the ”Files”

subheading.

B.1 Files

You will generate files for your thesis. It will behoove you to name and document them in

a logical and consistent way as you go, as here you will provide a map of where everything

is. For example:

The code to generate all of the figures used in this thesis are in the Google Colab

notebooks linked here: ThesisWorkPt1, ThesisWorkPt2, Polynomial Fits

The raw data files are stored in the Google Sheet here: Original Data

B.2 Code

Code for Abaqus:
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1 from abaqus import *

2 from abaqusConstants import *

3 import __main__

4 import section

5 import regionToolset

6 import displayGroupMdbToolset as dgm

7 import part

8 import material

9 import assembly

10 import step

11 import interaction

12 import load

13 import mesh

14 import optimization

15 import job

16 import sketch

17 import visualization

18 import xyPlot

19 import displayGroupOdbToolset as dgo

20 import connectorBehavior

21 # ’2404’,’21604’,’362404’,’22404’,’23204’,’28404’,’36404’,’281604’,

22 # ’282404’,’283204’,’361604’,’363204’

23 names = [’2403’,’22403 ’,’23203 ’]

24 #Determines which models the code will run on (theoretically ,

25 #sometimes it just runs on whichever model is currently active)

26 for name in names:

27 #Define Kapton

28 mdb.models[name]. Material(name=’Kapton ’)

29 mdb.models[name]. materials[’Kapton ’]. Density(table =((1.42e-03, ), ))

30 mdb.models[name]. materials[’Kapton ’]. Elastic(table =((398000.0 , 0.34),

))

31

32 #Define Section
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33 mdb.models[name]. HomogeneousShellSection(name=’Section -1’,

34 preIntegrate=OFF , material=’Kapton ’, thicknessType=UNIFORM ,

35 thickness =0.05 , thicknessField=’’, nodalThicknessField=’’,

36 idealization=NO_IDEALIZATION , poissonDefinition=DEFAULT ,

37 thicknessModulus=None , temperature=GRADIENT , useDensity=OFF ,

38 integrationRule=SIMPSON , numIntPts =5)

39 #Section Assignment

40 p = mdb.models[name].parts[’Part -1’]

41 f = p.faces

42 faces = f.getSequenceFromMask(mask=(’[#1 ]’, ), )

43 region = p.Set(faces=faces , name=’Set -1’)

44 p = mdb.models[name].parts[’Part -1’]

45 p.SectionAssignment(region=region , sectionName=’Section -1’, offset

=0.0,

46 offsetType=MIDDLE_SURFACE , offsetField=’’,

47 thicknessAssignment=FROM_SECTION)

48

49 #MESH PART HERE (I do this manually because I couldn ’t successfully

partition using python)

50 #a. Global seed = 0.8, curvature param = 0.01

51 #b. Create local seed for middle regions with seed = 0.5 and curvature

= 0.007

52 #c. Partition pull tabs and assign them as structured quad

53

54

55 #Create steps

56 mdb.models[name]. BuckleStep(name=’Buckle ’, previous=’Initial ’,

57 numEigen =10, eigensolver=LANCZOS , minEigen =0.0, blockSize=DEFAULT ,

58 maxBlocks=DEFAULT)

59

60 mdb.models[name]. StaticStep(name=’Load’, previous=’Buckle ’,

61 maxNumInc =10000000 , initialInc =0.01 , minInc =1e-20, maxInc =0.1,

62 nlgeom=ON)
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63

64 mdb.models[name]. StaticStep(name=’Load’, previous=’Buckle ’,

65 maxNumInc =10000000 , initialInc =0.01 , minInc =1e-20, maxInc =0.1,

66 nlgeom=ON)

67 a = mdb.models[name]. rootAssembly

68

69 #Create BCs and Load (these may or may not fail sorry)

70 a = mdb.models[name]. rootAssembly

71 e1 = a.instances[’Part -1-1’]. edges

72 edges1 = e1.getSequenceFromMask(mask=(’[#2000000 ]’, ), )

73 region = a.Set(edges=edges1 , name=’Set -1’)

74 mdb.models[name]. EncastreBC(name=’BC -1’, createStepName=’Initial ’,

75 region=region , localCsys=None)

76

77 a = mdb.models[name]. rootAssembly

78 s1 = a.instances[’Part -1-1’]. edges

79 side1Edges1 = s1.getSequenceFromMask(mask=(’[#0:400 #400 ]’, ), )

80 region = a.Surface(side1Edges=side1Edges1 , name=’Surf -1’)

81 mdb.models[name]. ShellEdgeLoad(name=’Load -1’, createStepName=’Buckle ’,

82 region=region , magnitude =-0.01, distributionType=UNIFORM , field=’’

,

83 localCsys=None)

84

85 a = mdb.models[name]. rootAssembly

86 e1 = a.instances[’Part -1-1’]. edges

87 edges1 = e1.getSequenceFromMask(mask=(’[#0:400 #400 ]’, ), )

88 region = a.Set(edges=edges1 , name=’Set -2’)

89 mdb.models[name]. DisplacementBC(name=’BC -2’, createStepName=’Load’,

90 region=region , u1=-3.0, u2=0.0, u3=0.0, ur1=UNSET , ur2=UNSET ,

91 ur3=UNSET , amplitude=UNSET , fixed=OFF , distributionType=UNIFORM ,

92 fieldName=’’, localCsys=None)

93
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94 #Create Imperfection (note: the filename here is specific to my

nomenclature)

95 mdb.models[name]. rootAssembly.engineeringFeatures.FileImperfection(

96 name=’Imperfection -1’, file=’E:\\ Rachel \\ abaqus \\’+name+’buckle.

odb’,

97 step=1, increment=1, linearSuperpositions =((1, 0.01), (2, 0.01),

(3,

98 0.01) , (4, 0.01) , (5, 0.01) , (6, 0.01) , (7, 0.01) , (8, 0.01) , (9,

99 0.01) , (10, 0.01)))

100

101 #Create Jobs

102 mdb.Job(name=name+’Buckle ’, model=name , description=’’, type=ANALYSIS ,

103 atTime=None , waitMinutes =0, waitHours=0, queue=None , memory =90,

104 memoryUnits=PERCENTAGE , getMemoryFromAnalysis=True ,

105 explicitPrecision=SINGLE , nodalOutputPrecision=SINGLE , echoPrint=

OFF ,

106 modelPrint=OFF , contactPrint=OFF , historyPrint=OFF , userSubroutine

=’’,

107 scratch=’’, resultsFormat=ODB , numThreadsPerMpiProcess =1,

108 multiprocessingMode=DEFAULT , numCpus=1, numGPUs =1)

109 mdb.Job(name=name , model=name , description=’’, type=ANALYSIS ,

110 atTime=None , waitMinutes =0, waitHours=0, queue=None , memory =90,

111 memoryUnits=PERCENTAGE , getMemoryFromAnalysis=True ,

112 explicitPrecision=SINGLE , nodalOutputPrecision=SINGLE , echoPrint=

OFF ,

113 modelPrint=OFF , contactPrint=OFF , historyPrint=OFF , userSubroutine

=’’,

114 scratch=’’, resultsFormat=ODB , numThreadsPerMpiProcess =1,

115 multiprocessingMode=DEFAULT , numCpus=1, numGPUs =1)

116

117 #Suppress Load step and imperfection file

118 mdb.models[name]. steps[’Load’]. suppress ()
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119 mdb.models[name]. rootAssembly.engineeringFeatures.imperfections[’

Imperfection -1’]. suppress ()

120

121 #Submit buckle job

122 mdb.jobs[name+’Buckle ’]. submit(consistencyChecking=OFF)

123

124 #Resume load and imperfection and suppress buckle

125 mdb.models[name]. steps[’Load’]. resume ()

126 mdb.models[name]. steps[’Buckle ’]. suppress ()

127 mdb.models[name]. rootAssembly.engineeringFeatures.imperfections[’

Imperfection -1’]. resume ()

128

129 #Submit model job

130 mdb.jobs[name]. submit(consistencyChecking=OFF)
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Code for Matlab Pattern Building:

1 xo =2;

2 yo =1.6;

3 os = 0.3; %ribbon thickness scalar (final ribbon width is twice this

scalar)

4 for xo = 2:0.8:4 %Selects x positions for BSpline control point

5 for yo = 2.4:0.8:4 %Selects y positions for BSpline control point

6 filename = [num2str(xo), ’.’, num2str(yo),num2str(os),’.dxf’];

7 n = figure;

8 set(0, ’DefaultLineLineWidth ’, 0.1);

9 axis padded

10 axis equal

11 axis off

12

13 %% Create first arm

14 cpts = [0 xo 2.5 2.5; 0 yo 0 0];

15 tpts = [0 5];

16

17 tvec = 0:0.1:5;

18 [q, qd , qdd , pp] = bsplinepolytraj(cpts ,tpts ,tvec);

19

20 z = zeros(size(q));

21 X = q(1,:);

22 Y = q(2,:);

23 Z = z(1,:);

24 %% Rotate original arm to create 3 more instances 90 degrees apart

25 ang2 = 180; % degrees

26 X1 = (X)*cosd(ang2) + (Y)*sind(ang2);

27 Y1 = -(X)*sind(ang2) + (Y)*cosd(ang2);

28 ang = 90; % degrees

29 X2 = (X)*cosd(ang) + (Y)*sind(ang);

30 Y2 = -(X)*sind(ang) + (Y)*cosd(ang);
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31 ang1 = -90; % degrees

32 X3 = (X)*cosd(ang1) + (Y)*sind(ang1);

33 Y3 = -(X)*sind(ang1) + (Y)*cosd(ang1);

34 %% Create two offset curves from each arm to create ribbon

thickness

35 [x, y] = offsetCurve(X(4:45) , Y(4:45) , os);

36 [x1 , y1] = offsetCurve(X(4:45) , Y(4:45) , -os);

37 [x2 , y2] = offsetCurve(X1 (4:45) , Y1 (4:45) , os);

38 [x3 , y3] = offsetCurve(X1 (4:45) , Y1 (4:45) , -os);

39 [x4 , y4] = offsetCurve(X2 (4:45) , Y2 (4:45) , os);

40 [x5 , y5] = offsetCurve(X2 (4:45) , Y2 (4:45) , -os);

41 [x6 , y6] = offsetCurve(X3 (4:45) , Y3 (4:45) , os);

42 [x7 , y7] = offsetCurve(X3 (4:45) , Y3 (4:45) , -os);

43

44 %% Create fillets

45 cpts2 = [x1(1,1) x1(1,1) -0.05 x4(1,1) -0.05 x4(1,1); y1(1,1) y1

(1,1) -0.05 y4(1,1) +0.05 y4(1,1)];

46 tpts2 = [0 5];

47

48 tvec2 = 0:0.1:5;

49 [q2 , qd2 , qdd2 , pp2] = bsplinepolytraj(cpts2 ,tpts2 ,tvec2);

50 a = q2(1,:);

51 b = q2(2,:);

52 a1 = (a)*cosd(ang2) + (b)*sind(ang2);

53 b1 = -(a)*sind(ang2) + (b)*cosd(ang2);

54 a2 = (a)*cosd(ang) + (b)*sind(ang);

55 b2 = -(a)*sind(ang) + (b)*cosd(ang);

56 a3 = (a)*cosd(ang1) + (b)*sind(ang1);

57 b3 = -(a)*sind(ang1) + (b)*cosd(ang1);

58

59 %% Draw the springs

60 hold on

61 os2 =0; %Vertical spring instance offset
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62 for os2 = 0:5:50

63 %Draw center hole

64 x_hole = [x flip(x3+5) a1+5 x6+5 flip(x5+5) a2+5 x2+5 flip(x1)

a x4 flip(x7) a3];

65 y_hole = [y, flip(y3) b1 y6 flip(y5+5) b2+5 y2+5 flip(y1+5) b

+5 y4+5 flip(y7) b3]+os2;

66 %Draw edge holes

67 x_rs = [flip(x+5) flip(a3+5) x7+5 flip(x4+5) flip(a+5) x1+5 x(

end)+5 x(end)+5];

68 y_rs = [flip(y) flip(b3) y7 flip(y4+5) flip(b+5) y1+5 y1(end)

+4.6 y(end)]+os2;

69 x_ls = [flip(x3) a1 x6 , flip(x5) a2 x2 , x2(end) x3(end)];

70 y_ls = [flip(y3) b1 y6 , flip(y5+5) b2+5 y2+5 y3(end)+0.4 y3(

end)]+os2;

71 %Draw edges and pull tabs

72 %There is sometimes an error that occurs here where a

small

73 %loop is drawn where the springs meet the pull tabs that

74 %will eventually need to be fixed.

75 x_edge = [flip(a2) x5 flip(x4) flip(a) x1 flip(x2+5) flip(a2

+5) x5+5 flip(x4+5) flip(a+5) x1+5 x(end)+5 x(end)+5 ...

76 17.5 17.5 x(end)+5 flip(x+5) flip(a3+5)

x7+5 flip(x6+5) flip(a1)+5 x3+5 flip(x) flip(a3) x7 flip(

x6) flip(a1) x3 x3(end) x2(end) x2(end) -12.5

-12.5 x2(end) flip(x2)];

77 y_edge = [flip(b2) y5 flip(y4) flip(b) y1 flip(y2) flip(b2)

y5 flip(y4) flip(b) y1 y1(end) -0.4 y1(end) -2.5 ...

78 y1(end) -2.5 y(end)+57.5 y(end)+57.5 flip(y+55) flip(b3+55)

y7+55 flip(y6+55) flip(b1)+55 y3+55 flip(y)+55 flip(b3)+55 y7+55 flip(

y6+55) flip(b1)+55 y3+55 y3(end)+55 y3(end)+55.4 y3(end)+57.5 y3(end)

+57.5 -2.5 -2.5 flip(y2)];

79 plot(x_hole , y_hole , ’k’, x_rs , y_rs , ’k’, x_ls , y_ls , ’k’)

80 plot(x_edge , y_edge , ’k’)
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81 end

82

83 %% Save as DXF

84 FID = dxf_open(filename);

85 dxf_polyline(FID ,transpose(x_hole),transpose(y_hole),zeros(size(

transpose(x_hole) ,1)));

86 dxf_polyline(FID ,transpose(x_rs),transpose(y_rs),zeros(size(

transpose(x_rs) ,1)));

87 dxf_polyline(FID ,transpose(x_ls),transpose(y_ls),zeros(size(

transpose(x_ls) ,1)));

88 dxf_polyline(FID ,transpose(x_edge),transpose(y_edge),zeros(size(

transpose(x_edge) ,1)));

89 dxf_close(FID);

90 set(gcf , ’Renderer ’, ’painters ’);

91 end

92 end

1 xo =2;

2 yo =1.6;

3 os = 0.4; %thickness scalar

4 for xo = 2:0.8:4

5 set(0, ’DefaultLineLineWidth ’, 2);

6 for yo = 2.4:0.8:4

7 if yo ==2.4

8 color = ’#D95319 ’;

9 elseif yo ==3.2

10 color=’#77 AC30’;

11 else

12 color=’#0072 BD’;

13 end

14 filename = [num2str(xo), ’.’, num2str(yo),’0.4’,’.dxf’];

15 axis padded

16 axis equal

61



17 axis off

18

19

20 %%Create first arm

21 cpts = [0 xo 2.5 2.5; 0 yo 0 0];

22 tpts = [0 5];

23

24 tvec = 0:0.1:5;

25 [q, qd , qdd , pp] = bsplinepolytraj(cpts ,tpts ,tvec);

26

27 z = zeros(size(q));

28 X = q(1,:);

29 Y = q(2,:);

30 Z = z(1,:);

31 hold on;

32 plot(X,Y, ’color’, color);

33 plot(X(1,19),Y(1,19),’*k’,’markersize ’ ,5);

34 label = ’(’+string(xo)+’,’+string(yo)+’)’;

35 labelpoints(X(19),Y(19),label ,’N’ ,0.2,1);

36 hold on;

37 end

38 end

39 hold on;

40 plot(0,0, ’*k’, ’MarkerSize ’, 5);

41 labelpoints (0,0, ’(0,0)’,’S’ ,0.2,1);

42 plot(2.5,0, ’*k’, ’MarkerSize ’, 5);

43 labelpoints (2.5,0, ’(2.5 ,0)’,’S’ ,0.2,1);

44 hold off;
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