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Abstract

Doppler cooling and resolved sideband cooling enable us to bring a trapped ion
to its motional ground state, creating the possibility of performing quantum logic
spectroscopy on the ion. Doppler cooling requires a laser beam resonant with a
transition between the ion’s internal states. Sideband cooling, meanwhile, needs a
pair of laser beams detuned from resonance. For effective cooling, we need a pulse
sequence in which each pulse has programmable frequency, amplitude, phase, and
duration to modulate the laser beam to our needs in each cooling scheme.

This thesis describes the construction of a versatile two-part radiofrequency syn-
thesis system for laser modulation. One part of the system involves a voltage-
controlled oscillator in conjunction with a phase-locked loop. We use it to generate
a 6.6GHz signal to make a resonant sideband. The pulse sequence system relies on a
more agile frequency source, a direct digital synthesizer. Using a field-programmable
gate array to control multiple direct digital synthesizers simultaneously, we achieved
fast switching among eight frequency+amplitude+phase profiles by installing external
transistor-transistor logic triggers to control the pulse widths and switch the output
profiles.
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Chapter 1

Introduction

The endeavor to unify the fundamental interactions into one single field has not

reached a conclusion yet. Many unified field theories, such as superstring or Kaluza-

Klein model, have prompted us to seek evidence of many of their predictions. One

such prediction is the time-variation of the proton-electron mass ratio µ = mp/me,

which, if present, could provide strong evidence to support certain unified field the-

ories and to refute others [3]. More importantly, non-zero dµ/dt would change the

way we view fundamental constants, and help us better understand the fundamental

interactions.

Measurement of dµ/dt will however require superb precision, given that the time

variation would be hardly observable. Molecules are good candidates to perform

such measurements on, because they have internal transitions sensitive to µ. For a

diatomic molecule, the energy difference between two rotational energy levels scales

with the me/M , where the reduced mass M of the nuclei is dependent on the proton

mass mp. By measuring the transition energies of two rotational transitions of the
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molecule, we can obtain a frequency different sensitive to the changes in the ratio µ.

The method to perform this precision measurement is quantum logic spectroscopy,

the application of laser pulses to study the internal structures of microscopic particles.

As we hope to find µ, we realize the difficulty to perform it on a molecule because

precision measurement of transition energies requires the atomic or molecular species

to have a narrow reference transition, effective state preparation/detection, and pos-

sibility to be cooled down to minimize frequency fluctuations [4]. Molecules satisfy

only the first requirement. We can however perform state manipulations on an atomic

ion, which satisfies the requirements for spectroscopy due to its rather simple struc-

tures, and transfer these actions to a more complicated molecular ion coupled with

the the atomic ion to form normal modes of motion through Coulomb interactions.

The atomic ion, called a logic ion, and the molecular ion, called a spectroscopy ion,

have to be coupled by Coulomb interactions when they are co-trapped inside a linear

Paul trap. The Coulomb interactions allow the logic ion to sympathetically cool the

spectroscopy ion to its motional ground state. We can then manipulate the internal

states of the spectroscopy ion to find the target transition frequency. This method

allows us to circumvent the complex structures of the molecular ion that impose a

difficulty on the study of the molecule’s µ-sensitive transitions by taking advantages

of the simple and better known structures of the logic ion. The spectroscopy ion and

the logic ion we will use are 16O+
2 and 9Be+, respectively.

Two laser cooling schemes, Doppler cooling and resolved sideband cooling, will be

used for effective cooling. The laser beams in both methods need to be modulated at

certain stages. This thesis focuses on the construction of a versatile radiofrequency

(RF) synthesis system for laser modulation. In Chapter 2, I provide the theories
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behind the cooling schemes, and discuss their implications on the requirements for

the RF synthesis system. In Chapter 3, I present the process of system construction,

and the ways to control the system. The actual performance of the system is shown

in Chapter 4, which also includes the discussion of the potential improvements that

can be applied to the system.
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Chapter 2

Theory

Laser cooling provides a fundamental tool in quantum spectroscopy on charged par-

ticles. In our set-up, the cooling process occurs in a linear Paul trap designed by

Shenglan Qiao [5]. After co-trapping a spectroscopy ion and a logic ion, diatomic

and atomic respectively, we apply laser cooling techniques to bring both ions to their

motional ground state. The actual cooling process aims to cool only the logic ion, but

this equivalently cools the the normal modes of motion arising from the coupling of

the two ions via the Coulomb interaction. The cooling process is necessary in quan-

tum spectroscopy because measuring the transition energy between the two rotational

states we are interested in requires both the spectroscopy ion and the logic ion to be

in their motional ground state, so that when we drive the target transition, we can

know the effectiveness of the drive from the two ion’s normal modes of motion, given

that we prepare both ions in their motional ground state and appropriate internal

states.

Doppler cooling is the first step in our cooling scheme. Efficient in bringing the
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temperature of the ions down significantly, it is however incapable of lowering the

temperature below a certain barrier called the Doppler limit. This is where resolved

sideband cooling, which can lower the temperature further beyond the Doppler limit

and eventually reach the motional ground state, takes over. Resolved sideband cooling

involves coupling of two of the ion’s internal states with motional states, performing

Raman transition between two coupled states, and repumping. Resolved sideband

cooling needs to be repeated several times with different sets of laser beams before

the ground state is reached. It is worth noting that the requirement for fast changing

of laser frequency in sideband cooling serves as the primary motivation for us to

develop a versatile laser modulation system.

2.1 Beryllium Ion

9Be+ is a good candidate for the logic ion in quantum logic spectroscopy not only

because it has a simple structure, but also the nuclear spin I = 3/2 it has couples with

the spin S = 1/2 of the valence electron in the magnetic field created by the nucleus.

This coupling gives rise to hyperfine structures with large splittings. The ground

state of the ion splits into eight hyperfine states in this structure. The first excited

state has fine structures, P1/2 and P3/2 due to spin-orbit coupling, and also hyperfine

structures. P3/2 has 16 hyperfine states, while P1/2, which is separated from P3/2 by

197GHz in the fine structure, has eight hyperfine states. See Fig 2.1 for a diagram

showing the energy levels of 9Be+. Later on we will denote S1/2|F = 2,mF = 2〉 as

|↓〉, and S1/2|F = 1,mF = 1〉 as |↑〉, as the transition between those two is crucial to

resolved sideband cooling discussed in Section 2.3. [6, p. 13]
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Figure 2.1: Energy level diagram of 9Be+. The hyperfine splittings of the S = 1/2
state are shown. Notice that we can safely neglect P1/2 when transitions between
S1/2 and P3/2 are involved because the splitting between P1/2 and P3/2 is very large
(197GHz). [7]

7



2.2 Doppler Cooling

Doppler cooling is the first step in ground-state cooling. It uses a laser beam to

cool the logic ion down, rather than heating it up. This may sound impossible at

beginning, but the internal structure of the ion allows this to happen. Suppose the

logic ion is trapped in our linear Paul trap, behaving like a three-dimensional simple

harmonic oscillator, we would then like to constrain its motions in all three directions.

It is possible to use a single laser beam to achieve this, but we have to make sure the

direction of the laser propagation has components along all three axes, thus meaning

that the laser must not be launched along any of the Paul trap’s axes of symmetry.

As its name suggests, Doppler cooling uses the Doppler effect to damp the atom’s

motion. The laser frequency that the ion perceives is higher, or blue shifted, if the

ion moves towards the laser source. If the shifted laser frequency corresponding to

a certain velocity of the atom becomes resonant with an electronic transition in the

atom, the logic ion then absorbs a photon and receives a momentum kick in the

direction of the laser propagation. The now-excited atom spontaneously emits a

photon in a random direction, and receives a momentum gain in a direction opposite

to the emitted photon. The randomness of the direction of this subsequent momentum

gain guarantees that the momentum gain due to spontaneous emission averages out

over time. We see that if the ion is moving towards the laser source, its motion will

be damped by the radiative force, which causes the atom’s kinetic energy to decrease,

equivalently lowering its temperature. [8, p. 267-268]

One thing to keep in mind is that if the ion is moving away from the light source,

it sees a lower laser frequency, making it possible for the ion to absorb photons whose

perceived frequency is resonant. This results in a gain in kinetic energy, equivalent to
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a heating process. To prevent this, we detune the laser frequency below resonance, in

which case more photons can be absorbed by the oscillating ion moving towards the

light source and less by the ion moving away. Red detuning of the laser frequency

would then result in a net loss of the ion’s kinetic energy, effectively cooling the ion

down.

2.2.1 Doppler Limit

Spontaneous emission grants the ion random-direction momentum gains that average

out over time. It seems that manipulating the laser detuning to make the ion undergo

continues directional absorptions and random emissions would cool it down to abso-

lute zero. However, this is not the case. There is a non-zero standard deviation to

the momentum of the ion due to the spontaneous emissions. The random momentum

kicks make the atom engage in three dimensional random walk, which is equivalent to

a heating process. This hinderance imposes a limit to which the atom can be cooled

by the Doppler beam, and it is called the recoil temperature, defined as TRecoil = h̄2k2

2mkB

[9, p. 65], where k is the wavenumber of the light.

We see that in order to perform Doppler cooling repeatedly, we would like to

use two of the ion’s internal states to perform a cycling transition. Our starting

point is the S1/2|F = 2,mF = 2〉 state. At this point, we have a distribution among

the hyperfine manifold of the ground state since any excited state decays fast. The

frequency detuning makes sure all the states in the manifold are visible to the Doppler

cooling beam. [7] Starting from here, we use circularly polarized (σ+) Doppler beams

to excite the ion. The selection rule governs ∆mF = +1 during the excitation process.

This drives the transition from S1/2|2, 2〉 to P3/2|3, 3〉. Once the ion is at P3/2|3, 3〉,
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the only state the ion can decay to is S1/2|2, 2〉, since the selection rule only allows

∆mF = ±1 or 0 in this transition, and we know that no ground states have mF = 3

or 4. Hence, the transition between these two states is unique, meaning that no other

transition will happen during the cooling process. The capacity of Doppler cooling

is not only limited by atom recoiling, but also the broad natural linewidth– we call

it Γ– that corresponds to the electronic transition used in the cooling scheme. The

linewidth of the P3/2|3, 3〉 is 19.4MHz. This linewidth imposes a temperature limit

TDoppler = h̄Γ/2kB because it sets a limit to the cooling rate, and it is usually much

higher than the previously mentioned recoil temperature. [8, p. 267] Hence, as the

linewidth limit is the lowest temperature de facto in this cooling scheme, it is called

the Doppler limit to address the extent to which the atom can be cooled by the

Doppler method.

At the Doppler limit, we have an ensemble of motional states. In this Boltzmann

distribution, we can find each motional state’s population by

P (n) =
e−En/kT

Z
=
e−nhν/kT

Z
(2.1)

where T is the Doppler limit obtained from TDoppler = h̄Γ/2kB. Z is the partition

function of the ensemble, and ν is the trap frequency (1MHz). We should know

that the next cooling scheme needs a motional state to begin with, so we ought to

find a motional state below which we have most of the probabilistic distribution of

states, or population of states, meaning that any higher motional state has negligible

population. For instance, we may find the first motional state, say |n〉, to have less

than 1/1000 of the total population by using Eq 2.1, then begin with the sideband
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Figure 2.2: Boltzmann distribution at the Doppler limit. In this limit, the states
beyond n=5 have negligible populations. We begin resolved sideband cooling at n=5
motional state.

cooling on |n− 1〉. Fig 2.2 shows a simple example for n = 6.

The Doppler limit prompts us to seek a more versatile cooling method that oper-

ates below the Doppler temperature. Resolved sideband cooling, based on the theory

of Raman transition, is one such cooling scheme that helps us bring the ion further

down below the Doppler limit to the lowest energy levels.

2.3 Resolved Sideband Cooling

When we reach the Doppler limit, the temperature at that point gives rise to a

Boltzmann distribution of the motional states. These motional states are associated
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with the 1MHz trap system, a harmonic oscillator. Starting from this ensemble

of various motional states, we apply a step-by-step cooling scheme called resolved

sideband cooling to decrease the ion’s temperature beyond the Doppler limit.

2.3.1 Stimulated Raman Transitions

To begin with, we first couple two internal states of the ion mentioned in Section

2.1, | ↑〉 and | ↓〉 for shorthand, and make transitions between the two. The energy

splitting between the two states is 1.25GHz, as seen in Fig 2.1. When we couple these

hyperfine levels, we make sure | ↓〉 is coupled with a vibrational state, say |n〉, while

|↑〉 couples with |n− 1〉. The transitions between these two states are called Raman

transitions, the core process in sideband cooling. [10]

Driving the Raman transition requires two laser beams. First we find the reso-

nance frequencies corresponding to the transitions from the target states, | ↓, n〉 and

|↑, n− 1〉, to a higher transient energy state, P3/2, then apply a detuning to the two

frequencies. These detuned frequencies are no longer resonant with the transitions,

but their difference is at resonance with the splitting between the two couple states,

1.25GHz. Those will be the laser frequencies we use for our two beams that will make

the transition happen. When engaging in Raman transition, the ion’s internal states

oscillate at a frequency, known as the Rabi frequency. It would then be possible to

make all population land on the |↑, n−1〉 state if we time our beams accurately. The

Raman beams that make the population end up exclusively on |↑〉 is called a π-pulse.

The Rabi frequency is given by
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Figure 2.3: Left: Stimulated Raman transition between the two coupled states
through a third transient state. fRED and fBLUE are the frequencies of the laser
beams. Right: Example of Raman transition between low-n vibrational states.

Ωn,n+1 = Ωn+1,n = Ω0|〈n+ 1|eiη(a+a†)|n〉| = Ω0e
−η2/2η1

√
1/nL1

n(η2) (2.2)

where Ω0 is the interaction strength that can be obtained by finding the strength of

the coupling between the two states. η is the Lamb-Dicke parameter for the coupling.

[11] L1
n is the generalized Laguerre polynomial that equals

L1
n(X) =

n∑
m=0

(−1)m
(
n+ 1

n−m

)
Xm

m!
(2.3)

We can see that Rabi frequency is inversely proportional to the square root of

n, which is associated with the state with higher energy among the two states. This

means we need to use multiple sets of laser beams with different durations for different

sets of coupled states, as they have different n values. If we use a particular π-pulse,
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say for | ↓, n〉 and | ↑, n − 1〉, only | ↑, n − 1〉 survives between the two, but not all

|↓, n− 1〉 population turns into |↑, n− 2〉 due to Rabi frequency’s dependence on the

n value. Further cooling from this point requires new sets of Raman beams to couple

two new states. Before the next stage can be initiated we will need a technique called

laser repumping to ready the ion for the next Raman transition.

2.3.2 Repumping

After the Raman transitions, we removed a quantum from |n〉, but the |n − 1〉 now

couples with | ↑〉, preventing us from stimulating the Raman transition to remove a

quanta from |n−1〉. To proceed, we need to apply an intermediate state manipulation

technique called repumping.

Laser repumping allows for a transition from one internal state to another without

changing the motional state. To explain this procedure, we need to break the short-

hand and use explicit expressions for states. Let us assume sideband cooling leaves

us at a motional state |n〉, with populations scattered around S1/2|F = 2,mF = 2〉

and S1/2|F = 1,mF = 1〉. We would then wish to bring all the population in

S1/2|F = 1,mF = 1〉 to S1/2|F = 2,mF = 2〉 as complete as possible. Keep in

mind that the following procedure will not involve any change in the motional state.

The first step in repumping is exciting the ion to a P3/2 state with mF = 2, either

P3/2|F = 3,mF = 2〉 or P3/2|F = 2,mF = 2〉, using a repumping beam that is resonant

with either of the two transitions (same transition frequency), and also has the correct

polarization to make ∆mF = +1. The excited ion then quickly decays into 3 possible

states: S1/2|F = 2,mF = 2〉, S1/2|F = 1,mF = 1〉, or S1/2|F = 2,mF = 1〉 according to

the selection rule. S1/2|F = 2,mF = 2〉 is the desired destination, and the population
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that decays into it will stay there because the the off-resonance repumping beam does

not excite it. If the ion decays back to S1/2|F = 1,mF = 1〉, the repumping beam

will pump it up again. The problem lies in the S1/2|F = 2,mF = 1〉 state– some

population will stay here and undergo no more transitions. To tackle this, we need

to apply a special technique– nuclear magnetic resonance (NMR)– to eliminate the

population in this undesired state.

To proceed with NMR, we apply an external magnetic field varying at 1.25GHz,

equal to the splitting between S1/2|F = 1,mF = 1〉 and S1/2|F = 2,mF = 1〉. Similar

to Raman transitions, this induces a flopping between S1/2|F = 1,mF = 1〉 and

S1/2|F = 2,mF = 1〉 at Rabi frequency. By applying the field for the duration

that creates a π-pulse, we can remove all the population in S1/2|F = 2,mF = 1〉

state. We we are getting now is a distribution among S1/2|F = 1,mF = 1〉 and

S1/2|F = 2,mF = 2〉. So, with repumping and NMR, we have successfully transferred

part of the population in S1/2|F = 1,mF = 1〉 to S1/2|F = 2,mF = 2〉 without

changing anything else. The population in S1/2|F = 2,mF = 2〉 can only increase

in this stage, because nothing is exciting it. We will then repeat this whole process

again and again, until we have almost all the state population in S1/2|F = 2,mF = 2〉,

then perform sideband cooling for |n − 1〉 motional state. See Fig 2.4 for a diagram

showing the transitions in the repumping process.

Repeated executions of stimulated transitions and repumpings can bring the ion

down to its motional ground state, provided we find the correct starting point for

sideband cooling from the Boltzmann distribution at the Doppler limit, and apply

accurate Raman beams, repumping beams, and NMRs. We would then reach the

endpoint of the complete cooling scheme. We will now present some implications
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Figure 2.4: The process of the laser repumping and the nuclear magnetic resonance.
The numbers on the transition lines indicate the order of that process taking place.
Not drawn to scale.
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Figure 2.5: An example of the modulation pulse sequence. The two pulses for the
Raman transition are shown both ways to indicate they are applied simultaneously.
Three applications of the repumping and the NMR are shown, but there could be
more for effective state preparation.

from this chapter on the required sequence of laser pulses.

2.4 Laser Pulse Sequence

It is important to think about the steps we need to go through to cool the ion down

to its motional ground state. We first apply the Doppler beam with the detuning

to decrease the ion’s temperature to the Doppler limit, then choose a motional state

that can address the upper limit for nearly all the motional states, and start using

resolved sideband cooling to remove a quantum from this state. Two Raman beams

forming a π-pulse will be used in the sideband cooling. When this is done, we are

unable to remove another quantum. We have to apply the repumping beam and the

NMR technique repeatedly to prepare the ion for another stage of sideband cooling,

and proceed from there. See Fig 2.5 for a qualitative illustration of the laser pulse

sequence we will need.

Knowing the requirements for the laser pulse sequence, we seek to build a versatile

laser modulation system based on these requirements. In the next chapter, we will
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see how the theories behind the cooling schemes we discussed about prompted us to

select qualified instruments for laser modulation accordingly.
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Chapter 3

System

Performing quantum spectroscopy on ions requires precise manipulation of the laser

frequency and pulse duration for effective cooling. With our frequency-locked external

cavity diode laser and an acousto-optic modulator (AOM), we achieve this goal by

constructing a versatile RF synthesis system capable of generating arbitrary pulse

sequences. Our experiment demands full controllability on each pulse’s frequency,

amplitude, and phase such that we can modulate the laser beam in any way we want

via AOM. We also want to be able to jump from one programmable pulse to the next

quickly to avoid atom thermalization and be able to cool multiple modes of vibration.

Our laser is detuned from resonance by 6.6GHz. This detuned beam suppresses

spontaneous emissions during the Raman transitions. In order to use the same laser

for resonant transitions– as in Doppler cooling and repumping– we frequency modu-

late the beam to add a weak sideband at resonance.

In this chapter, we first demonstrate the process of controlling a detuning genera-

tor based on a voltage-controlled oscillator (VCO) evaluation board. Cheyenne Teng
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[7] shows that the detuning works at 6.6GHz with its power at 20dBm. Without an

option to modulate the signal amplitude on our oscillator, we apply amplifiers and

attenuator to tune the power to the desired value. Frequency and phase stabiliza-

tion is guaranteed by an on-board phase-locked loop (PLL) which utilizes a negative

feedback mechanism to lock the VCO output to a 10MHz clock signal, so that we

can detune the laser without disturbing its frequency stabilization. We then move on

to introducing the construction of the pulse sequence system, which plays the most

important role in laser modulation. Instead of using a VCO and PLL combination, we

base our system on a direct digital synthesizer (DDS) to meet our requirements on the

pulse sequences. Multiple channels of modulation signals are necessary in the cooling

scheme, and while we employ multiple DDSes, we also need a field-programmable

gate array (FPGA) as the central control unit to allocate the outputs and deliver

commands. We can control 4 DDSes on an IC board with a FPGA on the same

board using a Python script and a TTL pulse sequencing system as output trigger.

With a backplane that supports up to 8 boards, our system is capable of achieving

a maximum of 32 output channels, each with programmable frequency, amplitude,

phase, and pulse duration.

3.1 Detuning

In resolved sideband cooling, we need a 6.6GHz detuning from P3/2, a relatively large

detuning compared to the linewidth of P3/2|3, 3〉 state. This way, by tuning our laser

to the sideband ofP3/2|3, 3〉, we can reduce the rate of spontaneous emission as those

will hinder the cooling process by introducing additional kinetic energy to the ion,
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and more importantly, the coupling between the two states involved in the Raman

transition will be stopped and the Rabi flopping no longer exists.

We use a laser beam whose frequency is already detuned by 6.6GHz from reso-

nance. We will also use this laser for repumping, so a portion of the laser beam’s

power has to be resonant. This is done by modulating the laser using injection current

modulation with a 6.6GHz RF signal to create two sidebands that are both 6.6GHz

away from the laser frequency. One of the sidebands will be resonant, and makes

a portion of the laser’s power become the repumping beam we need. In sideband

cooling, we do not want resonant light, so we will use a switch to turn off the RF

signal input to eliminate the resonant sideband.

Our task is the generation of the 6.6GHz RF signal. 6.6GHz is a relatively high

frequency– it falls in the label of microwave in radio spectrum. We will present a

frequency generation device that does this job– voltage-controlled oscillator.

3.1.1 Voltage-Controlled Oscillator

A voltage-controlled oscillator (VCO) is an electronic instrument that oscillates at

a frequency determined by the voltage input. It is an example of an LC circuit

responding to a control voltage by varying its oscillation frequency. A stable DC

input will result in a sinusoidal output signal whose frequency is instantaneously

controlled by the input. A VCO is very useful in generating high frequency, although

low frequency applications are also common. It is worth noting that one outstanding

feature of a VCO is its low phase noise. An ideal oscillator would generate a perfect

sine wave, revealing one line in the frequency spectrum. Realistic oscillators can never

achieve such perfection, and will always introduce fluctuations in phase, resulting in
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Figure 3.1: Basic design of a VCO.

a spread of frequencies about the spectral line. [12, p. 518]

Fig 3.1 shows an illustrative block diagram of a VCO. The capacitor and the

inductor together determine the base oscillation frequency. The tuning voltage is

supplied to the diode in the diagram. The diode is a varactor diode that varies its

capacitance across the junction when the voltage across auction is changed. Conse-

quently, the output frequency is controlled by the tuning voltage (applied across the

varactor diode).

The VCO we use is MAOC-009269. From Fig 3.2 we can see the output frequency

is increasingly nonlinear with increasing tuning voltage, but the output frequencies

under different temperatures remain fairly close, not to mention we will make sure

the temperature of the device stabilizes before the experiment. [1]

We may also find the output power’s dependence on tuning voltage. Cheyenne

22



Figure 3.2: Output frequency’s dependence on tuning voltage. Tuning voltage is the
voltage directly across the varactor diode, not to be confused with supply voltage,
which is the stable DC supply to power the VCO board. [1]
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Figure 3.3: Output power’s dependence on tuning voltage. [1]

Teng [7] determined a working power of 20 dBm. Without an option to change the

amplify the output signal on our board, we have to carefully apply amplification and

attenuation to reach the exact power level. This procedure will be presented in a

later section.

In the next section, we will present the phase-locked loop, a control system that

locks both frequency and phase of the output signal to the clock signal, further

improving the stability of our modulation signal.
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3.1.2 Phase-Locked Loop

A phase-locked loop (PLL) is a control circuit that locks a signal to another one, so

that the two will have the same phase and frequency. By implementing the PLL, we

can lock the VCO output to a reference signal, so that the stability of the reference

signal can be transferred to the VCO output, considering any fluctuations in the

tuning voltage introduce error to the output frequency.

A PLL consists of a phase detector, a loop filter (low-pass filter), a frequency

source, a feedback divider, and a reference divider. A portion of the signal generated

by the frequency source, in our case the VCO, goes through the feedback divider and

gets its frequency divided by a set value N . Meanwhile, the reference signal is fed to

the reference divider, and also reduce its frequency to 1/R of the original level. The

values of N and R are determined by the feedback divider and the reference divider

respectively such that

fref
R

=
fV CO
N

(3.1)

This way we are making sure we are compare their frequencies at the same level.

The necessity to implement the reference divider arises when we require a certain

spacing in the output signal, and that spacing is uniquely determined by the divided-

down reference signal whose frequency is
fref
R

. [13, p. 134-144]

Both divided signals are loaded into the phase detector to match their phases and

frequencies. If both match up, the phase detector will generate no output any thus

the whole loop is ”locked.” However, if the VCO frequency (divided down) or phase

drifts from the reference signal, the phase detector will generate a negative feedback
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Figure 3.4: Block diagram of a typical phase-locked loop. This type of PLL is also
called a integer-N PLL given that the feedback divider divides the VCO output by
an integer, N.

signal that is combined with the VCO output to correct the errors. For instance, if

the phase of the VCO output shifts, the phase detector responds by modifying the

control voltage so that the VCO output catches up with the reference. Similar for

frequency correction, the feedback signal addresses the difference between the two

inputs, and modifies the VCO output by superimposing an negative error to it. It is

possible to increase the resolution of the output signal by replacing the integer divider

by a fractional divider, thus allowing the reference signal to be less reduced. This

type of loop is called fractional-N PLL, but is not of our interest in this experiment.

We can see from Fig 3.4 a loop filter is installed between the phase detector and

the VCO. This low-pass filter is set in place primarily due to the possibility that some

of the reference signal power may be delivered to the output and cause a spurious level
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Figure 3.5: We measure the actual output power levels at different frequencies. The
result differs from Fig 3.2 and Fig 3.3. Although the actual cause is unknown, but
it is unlikely the VCO solely would perform so much differently from specified, so we
suspect that the evaluation board attenuates the output at high frequency range.

in the output. Referred to as reference spurs, these undesired offsets in output come

from instrumental imperfections in the phase detector. Since the spurs come directly

from the reference signal, their frequencies are high compared to the feedback signal,

therefore can be eliminated by a low-pass filter set to allow only feedback signal to

pass through. Other considerations that motivate loop filter installation may include

the ability to measure the overall stability of the loop, as we may alter the filter

setting to find the ideal range in which the loop can achieve locking.

The PLL we use is Analog Devices ADF4108. It tunes over an 8.0GHz bandwidth

that suits our interest. The PLL is integrated on an evaluation board, UG-160,

that allows computer programmability. The board takes in a reference signal up to
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250MHz in frequency, but we use 10MHz, the frequency of the lab master clock. To

synchronize all the devices within the lab, we will ultimately use the lab master clock

on our PLL in the long run, but in this initial test we will use a 10MHz reference

output of the spectrum analyzer that we use to measure the output frequency and

power. This makes sure the PLL and the analyzer is clocked by the same source.

The result is a sharp peak at 6.6GHz on the frequency spectrum, as seen in Fig 3.6.

From Fig 3.5 we can see the output power’s dependence on frequency. There is huge

discrepancy between the oscillator’s documentation and the actual performance, and

this may be due to the attenuations from the evaluation board, the wires we use, or

the spectrum analyzer. [14]

We successfully obtain a signal at the target frequency. We need to implement

amplifiers and attenuators that work at this high frequency range. We can use fixed-

gain (or loss) type or variable-gain type device for each type of modulation, but

considering the simplicity of our goal, fixed-gain amplifiers and fixed-loss attenuators

would serve us just right. The next section will discuss how do we choose amplifiers

and attenuators to reach accurate power level.

3.1.3 Amplification

Our goal is to increase the output power by 29 dB. It is hard to find a single amplifier

that has this amplification level. We will use two amplifiers to go beyond 20 dBm first,

then apply attenuators to bring the power level down, given that we have abundant

choices of attenuators.

When we choose our amplifier, we have to look at not only the frequency range

and gain, but also the maximum output power. Before damaging the device, the
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Figure 3.6: Spectrum analyzer displaying a sharp peak at 6.6GHz on the frequency
spectrum of the output signal. The output power is -9.33 dBm at this point.
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output usually saturates at a certain level due to the increasing nonlinearity. We

characterize this behavior as the compression region. Ideal amplifiers guarantee a

linear relationship between the input power and the output power, but practical

amplifiers exhibit nonlinearity, and the difference between the theoretical response

curve and the actual response curve becomes larger with larger input level. The

point where the theoretical value is 1 dB higher than the actual value is called the 1

dB compression point, marking the boundary where nonlinearity becomes dominant.

The actual response curve usually becomes flat very quickly after the this point, so

we can regard the output power level at the 1 dB compression point as the maximum

output power of the amplifier.

The first amplifier we use is Mini-Circuits ZX60-183+. It works from 6GHz to

18GHz, and has a typical gain of 24 dB. The 1 dB compression point is at 18.2 dBm

when the signal frequency is 6.6GHz, meaning that we cannot go beyond this level

with this single amplifier. [15] We then have to install another amplifier, Mini-Circuits

ZRON-8G. This amplifier works at range 2-8GHz and has fixed gain of 20 dB, and 1

dB compression point at 20 dBm. We can refer to Fig 3.8 to find that the amplifier

should achieve a gain of more than 22 dB at 6.6GHz, but would saturate before that

due to nonlinearity of the response. The ZRON-8G amplifier can take 10 dBm at

maximum as its input, so the signal must be attenuated before it. [2]

We start testing the output power by connecting the two amplifiers together, and

applying different attenuators in between.

We see from the table for attenuation vs output power that the ZRON-8G amplifier

starts to saturate before 20 dBm. Although the device goes to 19.67 dBm after it

starts to saturate at 19.50 dBm, we should regard 19.50 dBm as our maximum possible

30



Figure 3.7: The region left of the 1 dB compression point is the linear region, and
the region right of the compression point is the compression region. Practically we
can take the output power level at the compression point as the maximum power.

Attenuation Output Power (dBm)
10 dB 18.50
9 dB 19.00
8 dB 19.33
7 dB 19.50
6 dB 19.50
5 dB 19.50
4 dB 19.50
3 dB 19.67
2 dB 19.67
1 dB 19.67

0 19.67

Table 3.1: Measured output power with different attenuators connected between the
amplifiers.
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Figure 3.8: The typical gains of the ZRON-8G amplifier at different frequency levels.
[2]
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level, since after this point we are inside the compression region, and any increase in

input power could bring potential instrumental damage. The specification sheet of

the amplifier also states that input power cannot surpass the 1 dB compression point

to avoid overload. [2]

The highest power we can get from our system is therefore 19.50 dBm. We expect

this to be a working power. Experimental verification is still necessary. If it turns out

we need slightly more power for the detuning signal, a third amplifier may be needed

to be installed in serial, or replace the ZRON-8G amplifier. For now, we can conclude

this section about the detuning system, and move on to the pulse sequencing system.

3.2 Pulse Sequencing System

In both cooling schemes we will use to cool the ion, our laser beam has to be modulated

to different frequencies. In addition, the laser beam needs to shine on the ion for

precise durations, especially in resolved sideband cooling where π-pulses make the

population move from one state to another completely. This time we will be working in

the very high frequency (VHF) range in the RF spectrum. To avoid ion thermalization

between pulses, the pauses between pulses have to be in the scale of microseconds,

given that ions thermalize in milliseconds. A VCO is no longer the ideal choice for

signal generation since it is not suitable for fast pulse sequence generation. Instead,

we will present another RF synthesis instrument called a direct digital synthesizer

(DDS) that has certain advantageous feathers in pulse sequencing, making it a more

favorable synthesis solution than the VCO and PLL combination.
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Figure 3.9: Fundamental design of the direct digital synthesizer.

3.2.1 Direct Digital Synthesizer

Like a VCO, a DDS also takes in a reference signal and generates a waveform, but

the basic mechanism behind the two types of synthesizers are very much different.

Inside a DDS, a numerically-controlled oscillator (NCO) receives the reference signal,

then creates a numeric representation of a waveform, essentially a digital signal that

contains all the waveform information. Functionally, the NCO is a look-up table for

the waveform and a counter. The digital output of the NCO is fed to a digital-to-

analog converter (DAC) to acquire an analog output signal. For the purpose of this

thesis, it is important to know how to program the DDS so that the NCO produces

the representation of the desired waveforms.

Compared to VCO, DDS has a number of advantages in pulse sequencing, with

the most noticeable being the ability to change the frequency of the output. The

complete waveform information is stored in the memory of the NCO, and the NCO

updates its output at each clock cycle from a 1GHz clock. Notice the since the clock
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frequency determines how fast we can update our output, the DDS excels in pulse

sequencing since it is using a 1GHz clock, much faster than the 10MHz clock the

VCO uses. With such splendid frequency agility, we can achieve arbitrary frequency

modulations within microseconds. Another feature of the DDS is its relatively low

phase noise. In an ordinary PLL, the feedback divider in the loop can reversely take

in the reference signal, amplify the phase noise of the reference, and let the phase

error bypass the phase detector. We can reduce this type of noise introduction with

DDS since the analog output is derived by dividing the reference signal instead of

multiplying it.

The DDS also excels the VCO in frequency resolution. The frequency resolution of

a VCO inside a PLL is limited by the reference signal, especially if the PLL is integer-

N. The DDS does not escape from the reference limitation, but since it uses reference

signal at much higher frequency, the PLL resolution limitation is automatically elim-

inated. This perk helps DDS prevail in pulse sequencing for sideband cooling as the

effectiveness of the cooling scheme depends on how closely we can modulate the laser

beam to desired frequencies. [16]

It is worth noting that a typical DDS cannot work in high frequency ranges like

a VCO. Certain circuit designs allow the DDS to surpass this limitation, but our

experiment does not impose such necessity. Our diode laser and the detuning system

will position us close to the frequency range where Doppler cooling and resolved

sideband cooling work. After that we only need modulation signals in the scale of

10’s to 100’s of MHz.

The DDS we work with is Analog Devices AD9910. The synthesizer generates

up to 400MHz analog output, and has frequency resolution at least better than 0.23
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Hz. AD9910 features 8 registers that can store 8 waveform profiles. Each profile

is a unique combination of frequency, amplitude, and phase. It integrates a 14-bit

digital-to-analog converter with sampling rate 1 GSPS (giga samples per second).

[16] Later we will discuss how to program waveform data into the DDS profiles and

switch between profiles. This procedure is what we want to use to generate arbitrary

pulse sequences. For now, we are missing a building block in the system structure.

Our DDS can store waveform data, but not sequence information. We cannot use a

computer to perform simultaneous control since computers tend to have irreproducible

executions, given that they are processes running in the background on a computer

that could slow down or even pause the execution. An instrument that can achieve

fast multi-channel control and synchronize its clock with the DDS is needed. This is

where the field-programmable gate array (FPGA) comes into play.

3.2.2 Field-Programmable Gate Array

A FPGA is an integrated logic circuit consisting of logic components programmable

by users, giving rise to ”field-programmable” in its name. It is capable of performing

complex logical tasks, and can be programmed using a computer. In our experiment,

the idea is to turn an FPGA to a central control unit for multiple DDSes so that

a programmed FPGA can solely instruct the DDSes to generate the desired pulse

sequences without subsequent commands from the computer. [17]

The FPGA+DDS solution for our experiment is the Milldown DDS board man-

ufactured by Enterpoint. It consists of 4 on-board AD9910 DDSes and a Xilinx

Spartan-6 FPGA. [18] Since each channel has 8 available profiles, a single board can

grant 32 output modes. See Fig 3.11 for an actual picture of the board. The board
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Figure 3.10: With a single FPGA, we can command multiple DDSes simultaneously
to perform synthesis tasks. The diagram shows the output signal from one DDS being
used to modulated the laser beam frequency through an acousto-optic modulator.

features 4 variable-gain amplifiers (VGA) to achieve amplitude modulation when used

in conjunction with a DAC (integrated in the DDS).

One convenient feature of this integrated system is its ability to synchronize the

FPGA and the 4 DDSes by a 1GHz clock signal. There is an on-board clock syn-

thesizer, but we will still use external reference for stabilization and synchronization

purposes. See Fig 3.12, Fig 3.13, and Fig 3.14 to find how a single 1GHz reference is

used to clock the 4 DDSes on a board.

Milldown’s design lets the DDSes be clocked by the external reference first. The

board also clocks the FPGA using the same reference signal, so that phase jittering

in the output is minimized since all the devices are synchronized. We can see how

the FPGA is clocked from same source as the 4 DDSes from Fig 3.14.

To extend the number of channels, we will use more than one board at the same
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Figure 3.11: Front view of the Milldown DDS board. The 4 medium-size chips on
the left are the integrated AD9910 synthesizers. The large chip on the right is the
Spartan-6 FPGA. The top 4 SMA connectors on the left are DDS output ports, while
the bottom connector is used as reference input. The region on the top-left is the
internet-control unit, which we will not use in this experiment.
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Figure 3.12: The 1GHz reference signal enters through the J7 connector, and goes
to the DS25CP152TSQ crosspoint switch as one of the selectable inputs. The
other input is STNTH CLK, the reference signal from an on-board clock synthe-
sizer. CLOCK SEL is the selection signal provided by the FPGA. We do not use
on-board clock in our synthesis, so we should use 0 on CLOCK SEL. Actually, the
FPGA automatically overrides the on-board reference if it detects external reference
input. The external signal is then sent through the output port. [18]
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Figure 3.13: Following the the clock switch in Fig 3.12, the external reference signal
acts as the input of an ADCLK846 fan-out buffer. The fan-out buffer is a clock
multipliers that creates copies of an input clock at the same frequency and feeds
them to multiple devices. We see that the clock signal is multiplied into 5 outputs
and then clocks 4 DDSes (one output is terminated). [18]
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Figure 3.14: The external reference is used to clock the 4 DDSes. DDS also has
a synchronization output that has the same frequency and phase as the reference
signal, and this signal is used to clock the FPGA through SYNCH O port after going
through another DS25CP152TSQ switch. This way, the 4 DDSes and the FPGA are
clocked by the same external source. [18]
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time. Milldown has a backplane product that supports up to 8 DDS boards via

standard PCI-E connectors. It also uses a single power input to power all the boards,

and has an optional feature to route a reference signal to the 8 boards. [19] We will

install an 8-way splitter to distribute the clock signal for simplicity, and this will make

sure every single major device, DDS or FPGA, is clocked by the same external clock

signal. See Fig 3.15 for an actual picture of the backplane.

Unlike our PLL system, the Milldown board does not come with readily available

software that allows simple programmability. Hence we have to find a way to configure

the FPGA and the DDSes through USB ports. In the next section, we will present

the process of configuring the system using computer languages.

3.3 System Control

Having derived the pulse sequences required for resolved sideband cooling, we wish

to translate the waveform information to commands to be executed by the FPGA.

Each pulse in the sequence may have different frequency, amplitude, or phase, and

each of these signal control parameters has to be pre-defined before any output. Each

frequency+amplitude+phase combination will be stored as a waveform profile in one

of the AD9910’s 8 profile registers to be selected later on.

We use a Python script provided by Vlad Negnevitsky to define the signal control

parameters, and load them into the profiles. This script has to be used in conjunction

with a FPGA firmware, also developed by Vlad Negnevitsky, so that the FPGA can

understand Python commands and turn them into digital signals as instructions for

the DDSes. We will now introduce the process of defining control parameters step by
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step.

The idea is to define the waveform in any sufficient way, so simplicity is preferable.

For each waveform, we define frequency in MHz, amplitude in percentage, VGA

amplitude in percentage, phase in degrees, and profile number from 0-7, then group

them into a text file. From here, the commands need to separate ways– frequency,

amplitude, and phase modulation happen inside the DDS, so these two parameters

shall be directed to the DDS via the FPGA, while the VGA amplitude command goes

directly to the VGA.

In Vlad Negnevitsky’s script, each DDS waveform profile is a 24-bit binary chain

containing frequency and phase information translated from our simple definition.

When we execute it, the waveform information, also called payload, gets sent to the

FPGA. The instruction that sets the VGA also routes to the FPGA, and when it

arrives, it tells the FPGA to send the DDS payload instruction to the DDS, thus

filling a profile. One thing to keep in mind is that the every instruction we send

to the FPGA will trigger the FPGA to send an I/O update signal, and this is the

command that initializes and updates the DDS output. For instance, if we keep

programming the DDS profiles, the DDS will always generate a signal based on the

last profile loaded into it, because of the I/O update signal attached to the VGA

instruction. The importance of the I/O update signal does reveal itself at this stage,

but later on when we perform profile switching in section 4.1 the I/O update signal

becomes a very important factor in determining the pulse sequence.

The workflow of the script is as follows: First, the program loads the waveform

settings stored in the text file, then translates them into binary commands. The

Python script then scans the computer serial ports and locates the port of the board.
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Next, it initializes the DDSes by clearing out all the profile registers on the DDSes,

namely writing them with all zeros. The last step is the actual writing: the program

sends the instructions to the FPGA as described above. It is worth noting that with

an in-program timer, we measure the run time of the entire script is more than two

seconds, meaning that the whole process of writing profile registers on the four DDSes

and also the VGA settings takes about that much time to complete. Of course, we

would not want to update the output by writing a profile and sending an I/O update

signal, simply because this takes too much. The DDS actually supports simultaneous

direct control on output via a high speed parallel data input port, but we will present

a more agile method to achieve arbitrary switching between the eight profiles on a

DDS by implementing a parallel input of digital triggers in the next section.

3.3.1 Transistor-Transistor Logic Triggers

When shaping up a pulse sequence, a pulse’s frequency, amplitude, phase, and du-

ration often need to be different from the preceding pulse. By grouping these 4

parameters into a set for a particular pulse, we can create a sequence by switching

between these sets with right timing. In the previous section, we introduced how to

program frequency, amplitude, and phase information into the DDS’s profile regis-

ters. The remaining questions are– how do we set the duration of each pulse? And

how, for each pulse, do we tell the DDS which profile to base its output on? Keeping

these requirements in mind, we ought to find some external signal source that can

synchronize with the DDS output and also carry the information for the choice of

profile. The DDS itself contains three input channels that allow profile selection by

logic signals. Fig 3.17 shows the pins used for digital logic signal inputs.

44



We use transistor-transistor logic (TLL) signals as the control inputs. TTL is a

logic gate digital circuit capable of generating digital logic signals. Such signal consists

of sequence of pulses that contain logic information. A logic high, which is 3.3V in

our case, means ”1” while a logic low, 0V with respect to ground, represents ”0.” We

intend to create parallel TTL inputs as triggers, directing the DDS to select profile

accordingly and setting the duration of each DDS pulse. This means for each DDS

we will need three TTL lines (channels) to ensure full switching capacity. When we

implement this method, it is important to keep in mind that since one DDS has only

eight output modes, even if at some point in the output sequence, such as between

pulses, we want to have a range where there is no signal, it would still take a profile

set to zero amplitude. When we set the logic levels, we should make sure each 3-bit

command is equal in duration, meaning that the three TTL lines should correspond

to each other in a way such that they remain their logic levels for the duration of a

pulse, until we need to switch to another profile.

We will illustrate the profile selection using an example. Consider having the DDS

profile 0-4 set as following:

DDS Profile 0: Frequency=0 Amplitude=0 Phase=0

DDS Profile 1: Frequency=2f0 Amplitude=2a Phase=0

DDS Profile 2: Frequency=f0 Amplitude=a Phase=0

DDS Profile 3: Frequency=2f0 Amplitude=a Phase=0

We can make a pulse sequence using these 4 profiles. See Fig 3.19 for the DDS

output derived from these profile settings and a 3-line TTL pulse sequence.
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We use an NI PXIe-6536 digital I/O board manufactured by National Instruments

for TTL lines. The board supports 32 digital channels, which means it can drive 10

DDSes or more, considering we need at most 3 lines for a DDS. Control of the board

requires the use of Labview, and we wrote a virtual instrument that can load a

waveform file in the format of hierarchical waveform storage (HWS) and drive the

board for TTL generation.

Before we can send the TTL signals to the DDSes, we need a slight revision of

the FPGA firmware as the original version written by Vlad Negnevitsky supports

only one profile pin on each DDS. Because there is no way we can send TTL signals

directly to the DDS because the profile pins are connected with the FPGA, we have

to use input ports on the Milldown board to route our signals. Fortunately, we have

abundant choices– the Milldown board has two 10-pin headers that can take in TTL

inputs. In addition, there is another header on the backplane that has the same

functionality. These pins are customizable– you can use a pin as manual I/O update,

or you can send TTL signal to a pin to power-down the DDSes, but here, we change

the FPGA firmware such that the TTL signals we send to the pins will be directed

towards the profile pins on the DDS.

From here, we are ready to generate arbitrary pulse sequences by programming

the DDS profiles and controlling the DDS output by implementing TTL triggering.

In the next chapter, we will test our system by evaluating DDS pulse sequence output

on an oscilloscope.
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Figure 3.15: Front view of the Milldown backplane.
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Figure 3.16: Workflow of profile programming. Notice that all the commands from
the computer go to the FPGA first.
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Figure 3.17: Pin layout for the AD9910 DDS. Pins 52-54 are used for parallel TTL
inputs. Pin 54 constitutes bit 1 in the 3-bit command, while pin 53 and pin 52 are
used for bit 2 and bit 3, respectively. [18]
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Figure 3.18: This figure shows how to map profile selection to a particular TTL
combination. When showing a logic high or ”1” level, the figure shows a logic level
change from low to high, then from high to low. for clarity. This may not be an
actual process in practice, as the DDS perceives a logic low as a ”0” and selects
profile accordingly. This means, if one TTL input is on the same logic level for two
consecutive pulses, we should not change the logic level in between, unless we want
to turn off the output for a moment.

Figure 3.19: TTL lines triggering DDS output, creating a specific pulse sequence
based on our commands. Dashed lines are logic low levels.
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Chapter 4

System Performance and

Discussion

To proceed with the cooling schemes, we need to test if our RF pulse sequence for laser

modulation meets the requirements. We have so far constructed the pulse sequencing

system by programming the FPGA and configuring computer-based control programs.

We will now see if the system allows us to generate an arbitrary pulse sequence.

4.1 DDS Output Test

As presented in chapter 3, our DDS is capable of generating a signal based on the

waveform we define, provided the payload does not exceed any of the DDS’s maximum

capacity, such as 400MHz in frequency. Before proceeding to pulse sequence creation,

we first need to test the quality of single mode output signal. We will operate the

DDS to generate a sinusoidal waveform based on our definition, and capture the

actual output on an oscilloscope. Without any TTL inputs, the DDS operates on the
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Figure 4.1: The sinusoidal DDS output based on an arbitrarily defined waveform.
Each grid on the x-axis is five nanoseconds.

payload information stored in profile 0. So let us define a waveform in profile 0 as:

DDS1 Profile 0: Frequency=100MHz Amplitude=10 Phase=0

In section 3.3, we introduced how the DDS refreshes its output based on the I/O

update signal sent by the FPGA. This means that we do not need any TTL triggers

to update the output to this newly programmed waveform. We can simply run the

Python script, then the DDS will commence the generation according to the first

profile continuously. Fig 4.1 shows the actual output from the DDS. We can see it

is a very stable signal without noticeable phase jitter– different cycles are clearly in

phase with each other.

We mentioned in section 3.2.2 that the DDS board is integrated with an internal
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Figure 4.2: The DDS output when the internal clock is in use. We can hardly acquire
anything useful in this signal, since the phase inconsistency is very observable even
between two consecutive cycles. The amplitude of the wave fluctuates significantly
as well. Each grid on the x-axis is 20 nanoseconds.

clock. For synchronization between the devices we use, we do not use the internal clock

as the reference signal for the DDS. However, it is worth comparing the internal clock

with the external clock for quality of the output. The FPGA firmware is programmed

such that the external reference, if present, overrides the internal clock. We can

simply disconnect the external clock to start using the internal clock. The result is

shown in Fig 4.2. We can see the output has not only significant phase jittering, but

also inconsistent shaping that can hardly be considered sinusoidal. This means the

external clock excels in both device synchronization capacity and signal quality.
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4.2 Profile Switching Test

We see that the DDS, when operating in single mode, can generate stable sine waves

based on our definition of the waveform. We now ought to make the DDS work in

multi-mode and create a pulse sequence using profile-switching function.

First, eight profiles on the DDS must be programmed to test full profile-switching

capacity. We use DDS1 on the board as the test unit, and connect 3 TTL lines to it

through the FPGA. In the Python script, we program the DDS1 profiles as following:

DDS1 Profile 0: Frequency=10MHz Amplitude=10 Phase=0

DDS1 Profile 1: Frequency=10MHz Amplitude=20 Phase=0

DDS1 Profile 2: Frequency=10MHz Amplitude=30 Phase=0

DDS1 Profile 3: Frequency=10MHz Amplitude=40 Phase=0

DDS1 Profile 4: Frequency=10MHz Amplitude=50 Phase=0

DDS1 Profile 5: Frequency=10MHz Amplitude=60 Phase=0

DDS1 Profile 6: Frequency=10MHz Amplitude=70 Phase=0

DDS1 Profile 7: Frequency=10MHz Amplitude=80 Phase=0

VGA amplitudes all set to 100.

To control the output, we set the TTL lines such that the DDS switches from

profile 0 all the way to profile 7, one profile at a time, returning to profile 0 between

each. The result from the oscilloscope can be seen from Fig 4.3.

The oscilloscope graph matches our previous prediction of the DDS output from

Fig 3.19. The output meets our expectation except for some glitching at the moment

of profile change. The ringing is nearly an instant phenomenon, meaning that it

has very high frequency. We have not modeled the frequencies in the ringing area,

but it appears that the ringing frequency is of a different order of magnitude than
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Figure 4.3: DDS output based on our profile settings and the TTL lines. Channel 1
is the DDS output. Channel 2, 3, and 4 are bit 0, bit 1, and bit 2 respectively in the
profile selection command. Each grid on the x-axis is 10 microseconds.
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the frequencies of interest (0-400MHz). The ringing is also very short in duration–

approximately equal to or less than one radiofrequency cycle, so the the possibility

that it will cause disturbance to the cooling process is negligible.

We also wish to look at the area of transition carefully to see if any delay is present

since it could cause a phase error. We zoom in on the oscilloscope to observe the region

where the DDS output updates to a new profile. Fig 4.4 shows the oscilloscope graph.

The first thing to notice is a slight ringing in the transition– we can see the cycle in

the center has slightly bigger amplitude than the adjacent cycles. We can also see

that all the cycles are in phase each other. Although we performed a profile switching

at this point, the DDS still makes sure there is no phase shift during the transition.

Another oscilloscope graph showing a frequency change can be seen in Fig 4.5.

Having known the DDS’s actual output capacity, we need to find if the DDS output

is consistently producible. We can repeat the pulse sequence simply by running the

Labview program that controls the TTL board repeatedly. This generates identical

TTL lines, and thus should trigger exactly the same DDS output. Unfortunately,

during certain runs we encounter inconsistencies in the output. One example of

output inconsistency can be seen in Fig 4.6.

In Fig 4.6, profile 4 replaces profile 0 as the final pulse in the sequence. Keep in

mind that this is only an example of output error. We have repeated the generation

many times, and almost every pulse in the sequence could indicate a wrong profile

switch. In the example given, the TTL lines send command 000 to the DDS, but the

DDS perceives it as 100, corresponding to the 5th profile. In this case, TTL1 seems

to be the culprit, since its logic level is regarded by the DDS as high while it should

be low.
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Figure 4.4: The region of the transition from one profile to another. The central cycle
has slightly higher amplitude. Despite the existence of this transition cycle, the two
waveforms are in phase with each other. Each grid on the x-axis is 10 nanoseconds.
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Figure 4.5: The region of the transition from one profile to another. This time the
frequency is set to double after the profile change. Each grid on the x-axis is 50
nanoseconds.
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Figure 4.6: An example of the DDS output involving an incorrect pulse in the se-
quence. After the profile 7, the DDS should supposedly switch to the profile 0 since
the TTL lines give 000 as the profile selection, but it in fact switched to profile 4
(100). Each grid on the x-axis is five microseconds.
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We need to understand the AD9910’s profile switching mechanism before we can

tell what is causing the output inconsistency. The DDS uses a synchronization clock

(SYNC CLK) signal to time the transition from one profile to another. SYNC CLK

is obtained from the system clock (1GHz) by diving it by 4 using a frequency divider.

A rising edge of SYNC CLK initiates a transfer of data from the designated profile

register to a I/O buffer. When a rising edge on SYNC CLK arrives at the DDS,

the DDS detects the logic levels of the TTL lines and translate that into the profile

number, then it retrieves the data in that profile and transfers them to the I/O

buffer. The data stored in the I/O buffer are not activated, meaning that they have

no effect on the DDS output. The actual activation of the profile is initiated by

the I/O update signal, which is sent by the FPGA when it detects a change in the

TTL logic levels. After the rising edge of the I/O update signal arrives, the DDS

needs to wait for the next rising edge of the SYNC CLK to initiate the data transfer.

The actual transfer happens at the moment when the next SYNC CLK rising edge

arrives. The data transfer sends the data temporarily stored in the I/O buffer to

the internal workings (active registers) of the device to generate the actual output.

An illustration of the profile switching workflow is given in Fig 4.7. The DDS can

automatically update itself every time a set number of SYNC CLK cycles have passed,

so that we repeatedly update the DDS output regardless any change in the TTL bit

stream (3-bit command). We do not implement automatic I/O update unless it is

proven to be necessary in the future. [18]

Knowing the mechanism of profile switching, we can now investigate the possible

cause for output inconsistencies. Imagine having a jitter in one of the TTL lines such

that during a certain pulse in that line, the edge on the right falls behind the other
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Figure 4.7: Process of profile transfer. Data stored in the I/O buffer indicate the
profile selected by the TTL inputs. We see an I/O update pulse is given when the
profile data in the buffer is changed due to a change in the TTL logic levels. When the
next rising edge of SYNC CLK arrives at point, the device registers the I/O update,
and waits until the next rising edge of SYNC CLK at point B to initiate the data
transfer from the I/O buffer to the internal registers. [18]

two. In this case, the wrong profile data will be stored in the I/O buffer momentarily

until the delayed edge arrives, but the FPGA will have already sent out an I/O update

signal at that time. Looking at Fig 4.7, we know that this will not cause any trouble

if the delayed edge’s arrival happens before the actual data transfer (point B), since

the device still reads from the I/O buffer, which now contains the corrected profile

data. However, if the delayed edge arrives after the I/O buffer data get sent to the

internal registers, but before the falling edge of the initial I/O update signal, the

device will then transfer the wrong profile data to the internal registers, causing an

output error. The delay has to be at least one SYNC CLK cycle, or 1
250MHz

= 4ns

to allow the actual output to be updated beforehand. See Fig 4.8 for an example of

this hypothesis.

To correct this type of error, we could improve our TTL synchronization by imple-

menting better connection solutions. We used unshielded wires to transfer the TTL

signals. In the future, we want to find shielded cables with mating connectors on
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Figure 4.8: An example of the output error caused by a TTL delay. The I/O update
signal initiates a data transfer to the internal registers before the wrong profile in the
I/O buffer is corrected, causing a continued output error. The output will resume
back to normal in the next profile switch, provided this type of error does not happen
again.
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each end to link the TTL board to the DDS board and backplane headers. Shielding

and mating connectors can provide protection against noise acquired from external

sources, and may reduce the the delay of TTL lines. We may also improve the TTL

rising and falling edges, where ringings are present, by performing impedance match-

ing on TTL cables.
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Chapter 5

Conclusion

We have constructed two separate radiofrequency generation systems that, when used

in conjunction, may effectively create a pulse sequence that meets the requirements

for modulating the laser beam in the two cooling schemes. In the actual experiment,

we need to configure the system based on the actual pulse sequences found by going

through the theories presented in Chapter 2. The complete cooling sequence, although

short in time, may have a large number of pulses. In addition, having to run multiple

channels simultaneously added extra tediousness to system control. In the long run,

we wish to develop a comprehensive method to realize automatic control of the system

based on the condition information we provide– such as the ground-state cooling of a

9Be+ ion. A future researcher in our lab, even with little knowledge on the instruments

discussed in this thesis, is expected to be able to use the system to create a modulation

pulse sequence efficiently.

One of the goals for the near future is solving the cabling and connecting problems

as the external noise reduce the precision of our output signal. We may also want to
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optimize the computerized control softwares for easier controllability. After that we

will be ready to install the acousto-optic modulator and modulate the laser for the

ground-state cooling once our apparatus is completed.
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Appendix A

Programming the DDS Profile

Registers

This appendix shows how to use the Python script to program the DDS profile reg-

isters. The script realizes profile register and VGA control by using a finite state

machine. As we covered in Chapter 3, we have payload commands and VGA settings

programmed by this script. To begin with, let us look at the commands we have:

wr msb, wr csb, and wr lsb are the 24-bit control words that write into a 72-bit

register on the FPGA, and later into the designated DDSes.

set vga is a 32-bit command that sets the VGA (external) value, and I/O updates

the DDSes’ outputs.

We write instructions in a text file as following:

1 a 000 f 075 v 100 0

1 a 007 f 075 v 100 1

2 a 000 f 080 v 100 0

66



2 a 100 f 080 v 100 1

The first number in line is the DDS number (1-4). a means amplitude in percentage. f

means frequency in MHz. v means VGA amplitude in percentage. The last number in

each line is the DDS profile that can be anything from 0 to 7. We can also implement

phase control by using p commands with its value in 0-360 (degrees).

The Python script reads these definitions and translate them into system com-

mands by using the set value instruction, as seen in A.1. We may not use frequency

higher than 400MHz due to the instrument limitation. We can see here the VGA

setting and the DDS amplitude setting give us dual power control, which can come

in handy if at a later stage we find attenuation of the output signal necessary.
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Figure A.1: The part of the Python script that translate our definitions of the wave-
forms into system control words.

68



Appendix B

TTL Connections

The Milldown DDS board features two 10-pin headers to receive logic commands. In

addition, there are headers on the backplane, one for each DDS board. for We can

use them for profile switching, or other functions such as powering down the board,

or manual I/O update.

In Fig B.1, we can see the two headers on the DDS board. Grouped into CONNA

and CONNB, as seen in Fig B.2 the logic commends from the two headers are sent

to the FPGA (top-left). Note that we have eight lines in each group at maximum.

The routing for the commands coming from the backplane connector is a bit more

complicated. The connector itself can be seen in Fig B.3. The eight lines on it are

labeled P1-4 and N1-4. Tracking those to the DDS connector, these lines are sent to

IO 1-4 P/N as seen in Fig B.4.

Fig B.5 shows that they arrive at the DDS board, and are labeled as EXP IO1-

4 P/N. Then, they are grouped into EXP IOBUS1-8 in Fig B.6. Finally, these lines

from the backplane are collected by the FPGA (right), as seen in Fig B.7.
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Figure B.1: The two headers on the DDS board. [18]
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Figure B.2: Arrival at the FPGA. [18]
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Figure B.3: Header on the backplane. [19]
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Figure B.4: The backplane lines route to the connector that links the DDS board and
the backplane. [19]
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Figure B.5: The lines from the backplane go to the DDS board. [18]

Figure B.6: Grouping of the backplane lines. [18]
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Figure B.7: Arrival at the FPGA [18]
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Appendix C

Programming the FPGA

We to alter the FPGA firmware, so that it can direct our TTL lines to the DDS

as desired. The firmware is written in Verily, a hardware description language. We

ought to change only the part that tells the FPGA the assignment of each TTL line.

Looking at the firmware, we can see: assign dds1 profile o = x, y, z;

assign dds2 profile o = x, y, z;

assign dds3 profile o = x, y, z;

assign dds4 profile o = x, y, z;

x, y, and z are placeholders– those are the spots where we should put the locations of

the TTL pins in. The setting for our system is: (Refer to Appendix B to find where

those lines originate.) For DDS1, x=clamped io i[1], y=bp io1 p, z=bp io3 p.

For DDS2, x=clamped io i[2], y=bp io1 n, z=bp io3 n.

For DDS3, x=clamped io i[3], y=bp io4 p, z=bp io2 p.

For DDS4, x=clamped io i[4], y=bp io4 n, z=bp io2 n.
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Appendix D

TTL Board Control

Labview provides powerful NI-DAQmx functions for users to control DAQ-compatible

devices, such as PXIe-6536, our TTL board.

Follow these steps to acquire digital output:

1. Create a channel in DAQmx. Specify the physical channel in lines. Then wire

task and error out to timing.

2. Specify clock. PXIe-6536 is hardware-timed so simply choose Sample Clock

from the drop-down menu. For convenience, create a box for clock rate (unit is Hz)

and wire it to timing. Again, wire task and error out to DAQmx Write.

3. To load the waveform data, create a file path input on front panel, then wire

it to Retrieve Digital WDT.vi. This VI is crucial for Labview to understand HWS

waveform data. Digital waveform should be wired to data input on DAQmx Write.

Lastly, wire # of samples in wfm to samples per channel on timing.

4. From DAQmx Write, wire task and error out to DAQmx Start Task. You

should choose Digital Wfm 1Chan NSamp from the drop-down menu.
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Figure D.1: Block Diagram. Specify physical channel and clock source here.

5. Add error VIs if needed.

See Fig D.1 for the Labview block diagram, and Fig D.2 for the front panel.

Loading HWS waveform data requires the NI-HWS palette. This palette is in-

cluded in NI-FGEN, NI-HSDIO, or NI-SCOPE. We installed NI-FGEN on our NI

box.

With this VI, you can generate pulses based any kind of self-defined waveform

data with one click.
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Figure D.2: Front Panel. Specify clock rate and HWS file path here.
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Appendix E

TTL Sequencing

Principally, a pulse sequence can be stored in either a binary file or an ASCII text file.

The latter is more convenient since you can see the pattern of the sequence directly.

See Fig E.1 for an example text file that defines a pulse sequence. Each number lasts

for one clock cycle of the the TTL board.

NI’s waveform editor can then convert this text file to HWS file, so that you can

load it into the VI in Appendix D.

In long term we would like to develop a software tool to help us create user-defined

waveform data. You specify the time periods when the logic level should be high, and

the software generates a file based on that.
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Figure E.1: Logic high level (3.3V) will be 1, and logic low level (GND) will be 0.
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Figure E.2: Example of a TTL sequence based on the definition in Fig E.1. Each
grid on the X-axis is five microseconds.
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Appendix F

System Enclosure

We built a box to enclose the whole pulse sequence system. The design is simple–

the backplane resembles the motherboard inside a computer, so we put it on the

bottom. We left enough space on the top, so that the backplane can support up to

eight DDS boards. The DDS output ports are SMA connectors. We positioned 32

SMA connectors on the box’s front panel for easy connections. All the control signals

including USBs and TTLs will go through the back panel of the box. We have two

20-inch fans for two-way cooling, preventing the DDS chips from melting down due

to high work temperature. To synchronize all the devices, we use a 8-way splitter

to distribute a single reference signal to all the DDS boards. The whole system is

powered by a Corsair 760i DC supply unit. See Fig F.1 for the layout of the box, and

Fig F.2 for a picture of the system enclosure.
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Figure F.1: System enclosure design.
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Figure F.2: A picture of the actual box.
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