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Abstract

The trapped ion platform has found significant application in fields as diverse as
quantum computing and sensing, reaction chemistry spectroscopy, atomic timekeep-
ing, metrology, and precision measurements for tests of fundamental physics. This
platform excels because of the superlative storage times, high level of coherence, and
intrinsic reproducibility of trapped ions. For these reasons, there may be wide appli-
cation for a software package that allows for the general simulation and optimization
of trapped ion experiments. One specific use of the platform is the probing of the
dissociation of O+

2 from a prepared rovibrational state, via the technique of Laser-
Cooled Fluorescence Mass Spectrometry (LCF-MS). Although LCF-MS is a widely
used and conceptually simple technique, the details of the cross-species excitation in
moderately sized, highly 3-dimensional Coulomb crystals yield rich dynamics. Due to
observed difficulties in conducting reproducible LCF-MS on these crystals, we have
turned to numerical simulation methods to guide our understanding of these dynam-
ics, with the goal of optimizing the resolution at which we can describe the number
of O+

2 in our trap. To this end, we have developed an application (dubbed the Quan-
tum Logic Ion Control Simulator, QLICS) to conduct simulations of our experiment
dynamics as well as the expected fluorescence data output. In this thesis, I provide
a brief review of our experimental system, emphasizing the parameters controlling
LCF-MS execution. Then, I describe how we integrate the relevant physics into our
simulation environment while also conducting small ‘benchmarking’ experiments to
verify the validity of our simulations. Next, I conduct an exploration of our system
using QLICS to both improve our understanding of the experiment dynamics and,
more importantly, demonstrate how the program can be generally used to study sim-
ilar experiments in the future. Through these explorations, we study the implications
of using different coolant species, exemplifying how the software can be used to inform
tangible, strategic decisions about the lab’s future directions. Finally, I showcase the
most powerful feature of QLICS, its ability to incorporate machine learning for the
online optimization of trapped ion experiments. I will present a new technique that
appears to substantially improve our experiment’s resolution in certain regimes, based
on results from our machine learning-guided studies of the system. We conclude with
a discussion of potential future applications of QLICS’s machine learning capabilities
to enhance experimental insight and performance.
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Chapter 1

Introduction

“Gallia est omnis divisa in partes tres...”

– Julius Caesar, Opening Line of Commentarii de Bello Gallico

Like Caesar, I have conceptually divided the introductory material into tres partes :

motivation, system, and the simulation software — the subject of this thesis.

While the motivation for creating a simulation environment was originally a simple

desire to understand and resolve issues in our own experiment, we came to realize that

the potential applications of an integrated simulation and experiment optimization

program extend well beyond our specific use-case. As such, the motivation of this

work (that is, the motivation to shift our focus from our own use-case towards more

general use by packaging our workflow as a CLI1 app) draws from the many diverse

uses for trapped ions in modern research and industrial settings, outlined in Sec. 1.1.

Before we can discuss our simulations, we must first introduce the system we

hope to represent. I have abbreviated the system discussion to emphasize not just

the aspects of our system relevant to the trap, but the aspects key to how we struc-

ture our simulation environment. One might expect the relative narrowness of this

approach to ultimately restrict the general application of the software package, but

1Command Line Interface. Unlike the real-world experiment control software, we have not yet
integrated any GUI.
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the abstraction of much of our experiment actually generalizes the discussion away

from our specific use-case. This carries over into the nature of the program itself, and

although the details of the Hanneke lab trapped ion system play a major role in the

results presented in this work, we have worked to minimize the extent to which these

details restrict the applicability of the software itself.

We will then conclude our introduction with an explanation for why we found the

need to study our system in a simulation environment, instead of studying the real

system itself. While this reasoning is specific to our group, it is probable that the

reader interested in exploring the possibility of simulating will relate to some of our

needs. To garner inspiration, and see the scope of studies that can be conducted using

the software in its current state, I refer the reader to the list of ‘suggested projects’

in Sec. 5.1.

1.1 Motivation

While we do introduce the motivation of the Hanneke lab here, it is only a single

example among many possible use-cases of trapped ions. We therefore give the ap-

plications of trapped ions primacy in our discussion. In other words, there is ample

motivation in studying trapped ion dynamics for the sake of better understanding

trapped ion dynamics.

1.1.1 Ion Trapping

With major applications in fields as disparate as quantum computing, reaction chem-

istry, and precision measurement spectrometry, ion traps (and the closely related

quadrupole mass filters) have emerged as one of the main technological devices de-

veloped and used for precision control of atoms and molecules in modern research

settings. In general, ion traps are devices that use electric fields to confine charged

2



particles in 3-dimensional space. Their effectiveness stems from their versatility, their

long storage times and deep trapping potentials, and the relative ease2 of production

[1].

Quantum Computing

Trapped ions are recognized as one of the leading platforms for quantum computing.

Sympathetic arguments point to the gate fidelity3 superiority (in both 1 and 2-qubit

operations) of trapped ion systems as well as the aforementioned coherence advantage

[1]. Despite these advantages, ion traps are not wholly superior to other platforms

(compare specifically with superconducting qubits) due to their low gate speeds and

difficulties in scaling the number of qubits. In application, this latter restriction may

seems to be more of an engineering issue than an intrinsic one, the former is mitigated

in part due to the high gate fidelity and long coherence times [1].

Chemistry and Spectrometry

A primary advantage ion traps have relevant to the field of chemistry is that they can

facilitate controlled observation of reactions, allowing for detailed study of reaction

mechanisms [2]. Ion traps are especially helpful at studying the reactions of highly

reactive chemicals, since it allows the experimentalists to almost perfectly isolate

the reactants from the environment. This has aided in the study of hard to isolate

reactions, such as ion/ion reactions [3]. Often, the traps allow for chemical reactions

to be probed using various mass spectrometry techniques [4]. In addition, a common

type of mass spectrometer, the quadropole mass filter, uses the same dynamics of a

linear Paul trap4 to filter a sample by species mass in analytical chemistry contexts

2That is not to say that there are not very delicate and complicated ion trapping systems. Rather,
it is relatively (compared to other trapping systems) straightforward to ‘get off the ground’ and trap
charged particles at all - a feature that goes a long way for some applications.

3Loosely, the accuracy with which the gate operations are implemented.
4A quadropole mass filter is, in fact, just a linear Paul trap with the endcaps removed.
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[5, 6].

Precision Measurements for Fundamental Physics

Closely related to the use of RF traps to study chemical reactions in charged particles

are the applications this technology finds in the context of precision measurement for

tests of fundamental physics. By allowing us to hold a reproducible (all atoms /

molecules of the same species are the same) system, in which we can control the

internal states, in space, we can optically drive state transitions. This allows us

to follow the scheme of preparing our ions into a known quantum state by some

means, and then driving them into another state. If we do this, we can take precise

measurements of the energy levels between such states, allowing us to probe the

internal structure of atoms and molecules [7]. This feature of ion trapping is, of

course, the original motivation for our use of them in the Hanneke Lab.

1.1.2 Our Precision Measurement Goal

Previous work has shown how the energy of certain transitions in O+
2 are especially

sensitive to the proton-to-electron mass ratio, µ [8, 9]. Since our goal is to measure an

energy difference, control of the initial rovibrational state is essential, which is why

we conduct this measurement in an ion trap.

µ̇/µ and physics beyond the standard model

The standard model, for all its triumphs, is known to be flawed in that it fails to ex-

plain reliably observed facts of the universe (gravity, matter/ anti-matter asymmetry,

etc). Various theories predict small time variation in fundamental constants (includ-

ing µ) and by making such measurements, we hope to either constrain these theories,

or make a direct measurement contrary to predictions by the standard model (which

predicts no time-variation in µ), see Ch. 2 of Annika Lunstad’s thesis for much more

4
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Figure 1.1: Block diagram of the relevant aspects of the trapped ion system. The
items most relevant to this thesis have been colored colored green. Outlined arrows
indicate electronic inputs controlling the experiment.

information, [9]. Obviously, either of these results would represent a great advance in

our understanding of the nature of reality, as even a more precise zero measurement

of µ̇ would help to constrain the list of proposed theories.

1.2 System

In very brief overview, our system (Fig. 1.1) consists of a linear Paul trap located

in a vacuum chamber, accessible to lasers, and controlled by a computer system

which reads information out of the trap with a PMT (photo-multiplier tube) for
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photon counting. We currently (intentionally) trap beryllium and molecular oxygen,

introduced to the trap via a sublimation oven and a molecular beam respectively.

Many of the blocks in Fig. 1.1 required full theses worth of development. I will try

to refer to the appropriate sections of these works as they come up.

1.2.1 General Structure and Vacuum Chamber

Obviously, a delicate system needs to be isolated from the environment. Because the

assumed primary cause of ion loss is statistical collision with neutral background gas,

it makes sense to isolate the system in a low pressure environment. In Ch. 2 of his

thesis, Will Henshon explains why we needed an ‘ultrahigh vaccuum’ and how such

a vacuum is achieved [10]. For our purposes, it is enough to know that a typical

pressure at the ion trap5 is about 1× 10−10Torr. In addition to the trap itself, both

a beryllium oven and an electron gun are situated in the trapping chamber. The

beryllium oven consists of a beryllium wire wrapped around a tungsten core through

which we pass a current, heating the wire and sublimating beryllium. The electron

gun serves as a general purpose ionizer, ionizing atoms and molecules without regard

for their internal state or species. This device acts as only a quick and dirty method

of getting ions in the trap but does not play a role in our final experiments. Finally,

to allow our lasers into this chamber we need to use windows of some sort. These

windows are made of material specifically selected to be transparent in the frequencies

of the lasers needed for our final quantum control efforts [10]. There are 6 (3 pairs)

of such window ports that allow optical access to the heart of the trap chamber and

an additional, unpaired port that allows our detection system to ‘view’ the trapped

ions. We release the oxygen in pulses which travel through the two prior chambers

(separated by skimmers) before entering the trap. The total path is on the order of

50 cm long. The source for the gas-pulse beam can easily be switched so that other

5Note that the vacuum chamber pressure is not constant across the sub-chambers, see [10] for
more details.
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gases, or oxygen sources of various purity6 could easily be used.

1.2.2 Lasers

At the time of writing, there are three (final) lasers integrated into our working

system. These are the 313 nm cooling laser (and its associated detuned component),

the 235 nm beryllium ionization laser, and the 301 nm molecular oxygen ionization

laser [8, 11–13].

Most relevant to this work is the 313 nm cooling laser. This laser is made from the

third harmonic of an external cavity diode laser (ECDL) lasing at 939 nm [12]. Before

entering our vacuum chamber and trapping region, the 313 nm light passes through

an acousto-optic modulator 7 which splits it into a detuned component and a (lab-

frame) resonant component. Typical detuning is around 400MHz and the detuned

component receives the majority (≈ 90%) of the optical power. Both of these beams

are controlled by our experiment software via a DDS board and so can be switched

on and off with sub-microsecond timing [11], a feature that is key to the execution

of our experiments8. The detunned and resonant components of the 313 nm laser

co-propagate with a k-vector of

k̂ =
1

2
x̂+

1

2
ŷ +

√
2

2
ẑ, (1.1)

so there is a slightly greater projection along the trap axis (the z-direction throughout

this thesis).

The 235 nm beryllium ionization laser is made from from frequency doubling a

470 nm ECDL, the subject of Christian Pluchar’s thesis, [13], and the oxygen ion-

6See [11] for the effect of source purity on beam temperature and thus state preparation.
7Actually it passes through two - and both components pass through each twice - but the upshot

is that we generate a detuned component and a resonant component.
8In addition to the convenience of efficient execution, our crystals are only stable for a limited

amount of time before statistical processes, namely collisions with background gas, cause ion loss.
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ization laser (301 nm) is a Sirah dye laser pumped by an Nd:YAG (532 nm), further

described, along with the 2 + 1 REMPI scheme in Ch. 2 of Addison Hartman’s

thesis, [8]. By switching a few mirrors, we can send the O2 ionization laser into

our vacuum chamber at either the TOF-MS position [14], or into the trap itself (the

latter configuration is the only one of concern for this work). When it is sent in to

the trapping region, it is perpendicular (in the benchtop plane) to the cooling laser.

The Be ionization laser is anti-parallel to the O2 ionization laser, meaning that we

must aim to avoid having both on at the same time, and we must be careful to use

physical barriers to prevent each from traveling up the other’s optical paths for the

protection of our optical devices.9 Neither of these lasers are controlled electronically

by our experiment manager software, and so we must manage them manually, which

prevents us from automating any crystal-generation experiments for the time being.

1.2.3 Trap

Our RF trap consists of 2 segmented and 2 unsegmented electrodes. This creates a

trapping potential we approximate as harmonic in all 3 dimensions (see Sec. 2.2.1).

The key takeaway is that the strength of the trapping potential (the coeffecient of

the dominant, second order term in the potential series expansion), is related to the

charge-to-mass ratio of a particular particle. This species dependence causes the

secular frequencies of lighter particles to both be higher, and the geometry of multi-

species crystals to behave in certain ways, see Fig. 1.2.

The high voltage RF potential of the trap is controlled by an electronic system,

detailed throughout Ch. 3 of Will Henshon’s thesis [10]. The electronic system

is broken into two boards, one is the ‘main board’ placed immediately outside of

the vacuum chamber, and the other is an auxiliary board connecting our computer-

controlled signals to the main RF board. While the main board controls the high

9In practice, it is much more important to protect the Be laser generation area from the powerful
O2 laser. Nevertheless, the point is that we can’t use both at once.
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outside. The relationship between different trap parameters and the crystal geometry
will be a key concept throughout this works. The figures were made by numerical
simulations done in qlicS.
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voltage, high frequency electronics creating the trapping potential, the auxiliary board

delivers the small, ‘modulating’ signals to particular segments of the trap’s electrodes.

This process of disturbing the crystal with small time-dependent signals is often

referred to as ‘tickling’, and this technique allows us probe the crystals’ internal

composition, as we will discuss shortly.

Central to this thesis is the technique of Laser-Cooled Fluorescence Mass Spec-

trometry (LCF-MS), a technique for the detection of ions that cannot be detected

directly (i.e. if they are not fluorescing). Broadly, because the secular frequency

is species-dependent, we can biasedly excite certain species’ motion by modulating

the trap potential at their secular frequency, creating a driven harmonic oscillator.

In principle, this excited motion couples to a visible species through Coulomb inter-

actions as visualized by the videos in Appx. A. Then, the Doppler shift from the

detection species’ motion causes a change in its recorded fluorescence.

This process is managed by an experimental controller, a LabVIEW program

called ‘Quantum Logic Ion Controller’ (QLIC). The program takes Python files that

define experimental sequences as input. While nominally written in Python, these

scripts actually contain instructions sent to our direct digital synthesis (DDS) board,

which is able to take the digital signal from our computer and turn it into an analog

waveform. As mentioned in 1.2.2, this is essential as we require pulses at frequencies

greater than that possible with our computer software interface to efficiently run our

experiments. Once these scripts are loaded into the QLIC program, we are able to

set the variables we wish to change over the course of the experiment, the values

of variables we wish to hold constant, and the range and step sizes with which we

wish to conduct our variable sweep. The most common and important experiment

we run with QLIC are the frequency sweep experiments, where we linearly sweep

the frequency of a signal modulating the trap potential, recording the fluorescence

response of the crystal at each modulating frequency. The series of pulses QLIC

10



Define Frequency
Sweep

Set Nominal Tickle
Amplitude

Directly Analogous to
QLICS Output

'ph_scattering.csv'
Directly Analogous to
QLICS 'iter object'

Encapsulated in QLICS
 Input 'experiment.ini'

Figure 1.3: QLIC front panel screenshot with key controlled parameters of the real
world tickle experiment highlighted, and analogues to important QLICS objects
noted. As will be discussed in Ch. 3, the capabilities of QLIC are exactly the QLICS
‘Run Experiment from File’ subroutine. The data displayed is photoshopped in from
the mixed-species crystal discussed in [11]. Variable values are roughly true to the
system when the original experiment was run, but should not be taken as exact.
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creates via the DDS board defines the ‘experimental sequence’: the duration and

times we leave on the cooling laser, probing resonant laser, trap modulation, count

photons for, etc. An example of the program front panel while running such an

experiment is shown in Fig. 1.3.

1.2.4 Imaging System

To see the crystal and take data from our experiments we have installed an imaging

system above the trap (as seen in Fig. 1.1). A microscope with a total magnification

of 30 magnifies the photons that are re-emitted by the ions in the crystal, if we shine

a laser resonant with a cycling transition on it. This light is then sent to either

a PMT or EMCCD camera, which we can switch back and forth between with a

servomotor-controlled flipper mirror. Images of the crystal are sent to a computer

in the lab, where we can often easily resolve the individual ions within the crystal

(typically spaced by several microns). The PMT photon counter is controlled by

the QLIC system and so we can receive photon counts over time frames needed per

our experiment. These results are logged live as the experiment is conducted in the

LabVIEW program’s front panel, as shown in Fig. 1.3.

1.3 Simulation

Because we are so greatly restricted in the ways we can actually probe our Coulomb

crystals10, there is a great potential for better understanding the dynamics of our

system through direct numerical simulation. However, numerical simulations are

inherently approximations of the actual physics, and so the tool must be used with

care so as to ensure our results are both physically accurate and true to our system.

10Trapped ions that are cooled into an apparently rigid structure are often referred to as ‘Coulomb
crystals’.
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1.3.1 Simulation and Optimization Need for Our Lab

The initial motivation for simulating dynamics at all came from the unpredictable

and confusing results we were getting from our real-world experiments. Specifically,

we would see resonances at unexpected frequencies, an absence of resonance response

behavior that we expect at times, and resonances that resulted in both peaks and

dips in the signal. In addition, we observed the unusual phenomena of resonances

that, we assumed, represent the disturbance of the Be+ in the crystal as peaks. This

behavior would appear inconsistently and is not in agreement with our theoretical

understanding of our system. Also, because there are many parameters over which

we could conduct our experiment, we want to find a systematic way of identifying the

best locations in this parameter space to improve our various experiment’s signals. In

other words, we want to treat our simulation environment as a virtual environment

in which we can conduct optimizations, as well as explorations to help us understand

the actual dynamics of the crystals.

1.3.2 Breadth of Usecases for a Trapped Ion Simulator and

Optimizer

While the objectives in the above subsection could have been accomplished by simply

creating and understanding our simulations, after some progress was made in the

project it became clear that the machinery we developed to get (and maintain) work-

ing simulations was significant enough that it would be in the long-term benefit of the

lab to create a simulation app that inherits all this machinery and makes life easier

for the ion-trapper. We called this program ‘QLICS’ (Quantum Logic Ion Control

Simulator) since, when all is going well, it should be simply simulating the happenings

of our experiments managed by QLIC. The program follows the general operational

structure of taking a configuration file (or batch of configuration files) as input, and
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returning photon-count-style data as output, a process which will be described in

greater detail in Ch. 3. The program is written almost exclusively in Python and

contains a full suite of examples, outlined in Appx. B, and that will be discussed

in the associated documentation [15]. The internal structure of the program will be

covered in Ch. 3. Finally, because optimization of our signal is such a significant

goal, we have incorporated a workflow which allows the app to directly integrate with

an online11 machine learning optimization package called M-LOOP [16]. This allows

us to tap into a powerful suite of machine learning tools, allowing neural networks to

take hold of our simulated experiment, changing the values of various parameters as

it optimizes our signal for us.

11Not ‘on the internet’, but ‘as our experiments are running’.
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Chapter 2

Background and Simulation

Benchmarking

This chapter will cover the experimental techniques relevant to our simulation work.

I will not attempt to provide a complete theory of any of these techniques. Rather,

I will only discuss these tools at the level of detail needed to understand the context

within which the simulation and crystal analysis work was completed.

2.1 Overview

The core of the experiment is the RF ion trap (the linear Paul trap). I will start by

discussing the basic principles of ion trapping in this device, including the parameters

relevant for the rest of the thesis, before turning to our specific trap design. We will

then move on to the technique used to indirectly and non-destructively analyze our

trapped crystals’ composition. Next, I will discuss the necessary principles of sympa-

thetic laser cooling before laying out our methods for simulating this system. Finally,

I will discuss several benchmarking experiments we completed to ensure agreement

between our simulations and expected results (obtained through both analytical and

numerical methods) for some simple and relevant systems. This final step is essential
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for giving us the confidence that our simulations are ‘correct’ - that is, that they

reflect both real physics and our specific experimental setup.

2.2 Relevant Techniques

2.2.1 RF Trap Principles

General Potential

While the stable confinement of ions in 3-dimensions with static electric fields is disal-

lowed by Earnshaw’s Theorem, traps constructed with time-oscillating electric fields

can provide stable confinement over multiple oscillations of the trapped particles. A

common subset of traps based on this principle are called ‘linear’ when oscillating

fields are used in only 2 dimensions, and a static electric field is used in the third [17].

I will now reproduce the portions of the discussions found in Refs. [10, 17, 18]

relevant to the simulation work. First, consider that the total electric potential,

Φ(x, y, z, t), can be separated into time-independent and time-dependent parts, which

we then expand (with the quadratic terms being the lowest-order term of significance

for a potential with a minimum), such that:

Φ(x, y, z, t) =
1

2
V (αx2 + βy2 + γz2) +

1

2
U cos(Ωt)(α′x2 + β′y2 + γ′z2) (2.1)

where Ω is the oscillation frequency on the RF electrodes, U is the amplitude of

the RF potential, and V is static potential1. Note that U and V are both single

effective values that map to slightly more complicated configuration of potentials on

the physical electrodes.

In the region within the trap, there are no additional charges defining the trapping

potential, so Laplace’s equation holds true (∇2Φ = 0). By applying this constraint,

1Despite the capital lettering, U and V are simply scalar constants
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we can restrict the values of the expansion coefficients. The specific solution to this

constraint for linear Paul traps is that

−(α + β) = γ > 0 (2.2)

α′ = −β′. (2.3)

Where we have let γ′ = 0 since the the time-oscillating portion of the potential will

be confined to the x and y dimensions. To clarify, we can justify the separate analysis

of the primed and unprimed spatial coefficients by superposition or by the fact that

Laplace’s equation must be satisfied for all times.

Motion in the axial dimension

Since γ′ = 0, the equation of motion in the z-direction, which we will now refer to as

the ‘axial’ dimension, is particularly straightforward to derive:

z̈ = −Q

m

∂Φ

∂z
= −QV γ

m
z (2.4)

where Q is the charge of a particle in the trap. This yields the axial secular frequency,

of

ωz =

√
QV γ

m
=

√
2κ|e|V
mz20

(2.5)

where in the final equality we let γ = 2κ
z20
, and Q = |e| since we only need to consider

singly-ionized particles. Here e is the charge of the electron, z0 is a characteristic

length scale in the trap, customarily chosen to be half the length of the central

electrode, and κ is a dimensionless factor defining the geometry of the trap. κ has

been simulated to be around 0.17, and has been found experimentally to be about

0.11, although this value seems to change for different trap parameters.2 The key

2For the experimental basis of these values, see Sec. 4.2.4 of Will Henshon’s thesis, [10].
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feature to note is that ωz scales as
√

1/m.

Motion in the radial dimension

For the first pass we will assume trap symmetry in the x and y dimensions (which we

will now refer to as the ‘radial’ dimensions), and will operate under this assumption

for the derivation of ωr, the secular radial frequency of a trap with no endcap voltage

(V = 0 =⇒ ωz = 0). Similarly to 2.4 we get,

ẍ = −Q

m

∂Φ

∂x
=

−Q

m
(Uα′ cos(Ωt) + αV )x (2.6)

and by letting α′ = 1
r20

and α = − κ
z20

and applying the substitutions:

ξ =
Ωt

2
, ax = − 4QV κ

mΩ2z20
, qx = − 2QU

mΩ2r20
(2.7)

we can recognize 2.6 as a Mathieu differential equation with ax and qx being the

Mathieu parameters.3 The details of the approximate solution for this equation can

be found in Refs. [17, 18], but for our purposes it is sufficient to say that to first

order and for qx well below 1 (which allows us to ignore the oscillations at Ω, as will

be discussed shortly), we find that

ωr =
qΩ

2
√
2
=

|e|U√
2mΩr20

(2.8)

where we have again let Q = |e| by the same reasoning of the preceding section. Note

that because ωr ∝ 1/m, the secular frequency of motion is unique to each species4

3Note that some derivations introduce the sign difference on the a and q Mathieu parameters,
but here we introduce it on α and α′. In the end, this doesn’t ultimately matter since we square q
to get the physically meaningful frequencies anyways, Eq. 2.9

4We, of course, assume no rare isotope or chemical compound related conspiracy to disguise an
unwanted species as an expected one. This assumption is especially valid when we are loading via
photoionization. When loading with the electron gun, there has been evidenced for the ionization
and trapping of unexpected species, though we still generally assume we are safe from a mass-
uniqueness standpoint. In addition, if we consider doubly-ionized species, their are further means of
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(we are concerned, essentially exclusively, with single ionization). In addition, since

we assumed radial symmetry, qx = |qy| (and so ωx = ωy = ωr). As previously stated,

this is the ωr for a trap that is unbounded in the axial direction.

Of course, we are seeking 3-dimensional confinement. From the zero enclosed

charge case of Gauss’s law it is clear that the counter-propagating electrical field lines

due to the static potential must split out into the x and y dimensions at the trap’s

center. These field lines serve to decrease the field strength in the x and y dimensions.

Under the assumption that they split out symmetrically:

ωx = ωy =
√
ω2
r − ω2

z/2 (2.9)

a slight reduction to the strength of the radial trapping potential. This is the approx-

imation of the radial frequency that is used in our molecular dynamics simulations

[15, 19]. It should be noted that the assumption of a cylindrically symmetric endcap

voltage is actually not accurate for our physical trap, since only 2 of our 4 electrodes

are segmented (and hold the endcap potentials), Fig. 2.1. This has the effect of

breaking the ωx,y symmetry.5

While it is important to understand how the trap parameters effect the secular mo-

tion in each dimension, it is worth stating explicitly that, by far, the most important

point of this discussion is the charge-to-mass ratio dependence of both ωx, ωy, and ωz

as seen in Eqs. 2.5 and 2.8. This means that each singly-ionized species (of differing

masses) has a unique secular frequency. This forms the core of the spectroscopic

techniques introduced in Sec. 2.2.2 and referred to throughout this thesis.

disguising one species as another. While we don’t realistically expect such a conspiracy to occur, it
is good to keep the possibility of these types of errors in mind.

5By appropriately modifying the a parameters for x and y we get ωx =
√
ω2
r − σ0ω2

z and ωy =√
ω2
r − (1− σ0)ω2

z , for which Eq. 2.9 is clearly the special case that σ0 = 0.5. David Lane investigates
the value of σ0 and reports that this value has a VDC dependence. See Sec. 3.5 of [20] for more
details.
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Pseudopotential Approximation

Since Eqs. 2.5 and 2.9, define the frequencies of simple harmonic oscillators, they can

be used to approximate Eq. 2.1 as a static, 3-dimensional harmonic potential:

Φpseudo(x, y, z) =
1

2
[ω2

x,ym(x2 + y2) + ω2
zmz2] (2.10)

This ‘pseudopotential approximation’ is extremely useful in simulating the dynam-

ics within the trap. In addition to decreasing the runtimes for simulations, it allows

us to solve many simple systems analytically, providing a basis for the benchmarking

experiments conducted at the end of this chapter. Note that while this approxima-

tion is normally very good near the trap null position in certain traps, it loses6 all of

the ‘micro-motion’, the motion of the ions at the RF frequency, Ω. Naturally, this

characteristic defines the range at which this approximation is valid, with the basic

assumption being that the motion at the secular frequency dominates the motion at

the RF frequency, or |qx,y| << 1. This restriction on qx,y, also restricts |ax,y| << 1 as

is required to maintain a stable trap, see Fig. 1 of [21]. Typically, we try and keep

qx,y < 0.3, with the maximum of the corresponding allowed range of |ax,y|, of course,

lower.

2.2.2 The ‘Tickle’

In broad terms, the main goal of the simulation work is to accurately analyze the

composition of the Coulomb crystals in the trap. The primary issue we face is that,

while we can directly image Be+ ions with a resonant laser beam, we do not have a

light source to cause O+
2 or O+ to fluoresce. We therefore use the indirect technique of

superimposing an additional time-oscillating electric field, resonant with the secular

6Glossing over the micro-motion is a major source of computational acceleration since it allows
us to set our timestep size based on the highest secular frequency (several hundreds of kHz) instead
of the trap RF frequency (about 10 MHz).
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frequencies of motion for these ‘dark’ species in the hopes that their increased motion

will disturb the coolant species we are imaging enough to cause a change in the

fluorescence signal. We often call this process ‘tickling’ the ions, because the term

evokes the image of a small (in magnitude) but precise (in frequency) disturbance

causing a large scale excitation in a system. This term also captures the periodic

nature of the disturbance.

The Physical Trap and Electrode Segments

The linear Paul trap is constructed out of 4 long electrodes with semi-cylindrical tips

[18]. We number the electrodes 1-4, progressing either clockwise or counterclockwise

from a viewpoint looking down the trap axis, Fig. 2.1. The trap RF is created

by using a counter-wound transformer to create two π out-of-phase voltage signals.

Each of these signals are sent to two opposing electrodes (see Fig. 2.1) such that the

phases of each electrode satisfy ϕ1 = ϕ3 = ϕ2 + π = ϕ4 + π, both the transformer

and the phase difference are discussed in Sec. 3.4 of [10]. Since we drive our RF

voltage on all 4 of our electrodes, the effective U , introduced in Eq. 2.1, is actually

double the RF amplitude received by any single trap electrode (in other words, the

peak-to-peak amplitude). Two of these electrodes are solid and two are segmented

into 5 segments. The electrodes are orientated such that the segmented electrodes are

directly across from each other (and likewise for the unsegmented electrodes). The

electrodes are numbered such that electrodes 2 and 4 are the segmented ones. The

lengths of these segments vary, with the middle three segments being much shorter

than the long segments on the outsides. The segments themselves are also numbered

from 1 to 5 going down the length of an electrode. Therefore, we can refer to a

specific segment, say the middle segment on electrode 2 as ‘segment 2-3’. We can

also send additional static and time-dependent voltages to any of the electrodes or
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segments independently of each other.7 This is how we create the ‘endcap’ voltage

of Eq. 2.1. It should be noted that we typically add different voltages (often about

10V) to the outer segments (segments 1 and 5) to our segmented electrodes then to

our inner ones. While these ‘outer endcaps’ (segments 1 and 5, which are the large,

blue, teal, yellow, and green segments in Fig. 2.1) have been previously shown to have

some effect on the harmonicity of the axial potential, the ‘inner endcaps’ (segments 2

and 4) dominate the axial potential in the actual trapping region, simply from their

proximity (the trapping region is much smaller than the 3mm width of the small

segments). Therefore, for the remainder of this work, we treat V as simply being the

potential on the inner endcaps. We have also demonstrated control of the position

of a trapped crystal by varying these static charges so as to push the crystal around

[10].

Figure 2.1: A cartoon of trap electrodes and photograph of the full trap assembly
with a quarter for scale. Note that 2 of the electrodes are segmented into 5 segments,
indicated by the varying colors in the cartoon. Also note that the cartoon includes
only the tips of the electrodes, since we typically ignore the portions of the electrode
far away from the trap center in simulations of the potential. The three central
segments are 3mm in length.

There are several types of ‘tickle’ electric fields we can create by sending time-

dependent signals to combinations of these electrodes. While there are many specific

7While we have set it up so that this wouldn’t be an issue, we don’t actually have complete
independent control of each segment with our current auxiliary board set up. Nevertheless, we have
control of all the segments needed to create the different types of tickles discussed here.
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fields we can create, the most important broadly fall into four categories, two of

which we regularly conduct experiments using, and two of which have not conducted

significant experiments using yet. The first two categories include ‘symmetric’ and

‘asymmetric’ tickles. A ‘symmetric tickle’ typically sends a sinusoidal signal to the

middle segment of an electrode (say, segment 2-3). A tickle of this sort would be

expected to predominately push a crystal symmetrically in the radial direction. An

‘asymmetric tickle’ typically sends a sinusoidal signal to one of the inner, off center

electrodes (say, segment 2-2 or 2-4). This field is expected to predominately drive the

crystal in the axial direction, although there is clearly some component in the radial

direction as well (especially if conducted on only one electrode, as is normally done).

The other tickling schemes include ‘squeeze tickles’ which would involve sending sig-

nals to multiple outside electrodes in order to drive a sinusoidal axial compression of

the crystal, and an ‘unsegmented tickle’, a tickle using only an unsegmented electrode

which would be expected to behave like a very symmetric tickle.

Using the computer software SIMION, we are able to simulate the electric fields

that result from a combination of potentials placed on any electrode segment(s). The

simulation works by iteratively calculating the electric field (by solving Laplace’s

equation) at a user-defined resolution at points within a region of interest and out-

putting all three components of the electric field for various positions. The typical

method is to apply static voltages to some combination of electrode segments in the

SIMION environment. As seen in Fig. 2.2, by then fitting a series expansion through

second order to the output of these simulations we can get an approximate multivari-

ate vector function of the electric field for every position. This function is then used,

along with the pseudopotential, in our dynamics simulations.
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Figure 2.2: The two plots to the left show projections of the modulating E⃗ field in the
y-z plane (x = 0), with the top plot showing a ‘symmetric’ tickle and the bottom plot
an ‘asymmetric’ tickle. Notice how for a point at the trap center (x = y = z = 0), the
symmetric tickle is almost uniformly in the −ŷ direction, while the asymmetric tickle
has a significant component in the axial (ẑ) direction. Additional slices compare our
second order fit to selected components of the simulated electric field in the right
hand plots (the 4 on top corresponding to the symmetric tickle, and the bottom 4 the
asymmetric). Of course, we also fit the Ex components as well as the x dependence of
Ey and Ez, but chose these slices because they highlight the different characteristics
of the two tickle types. Since the ions are typically close the trap center, the quality
of the fits are really only important in the central range of these plots.

2.2.3 Laser Cooling

In order to actually form a ‘crystal’, we must of course cool the system. By sending

a laser with frequency detuned below the resonance of a cycling transition of our

coolant ions, we can cool the system by driving the transition (and thus imparting a
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momentum opposite to that of the motion) of a certain velocity class of ions traveling

towards the laser beam. Since the photon is reemitted in a random direction, the

net effect over many cycles is that the system cools, this is the technique known as

‘doppler cooling’ or simply ‘laser cooling’.

Linear Approximation of Net Cooling Force

The following highly abbreviated analysis is based off of the discussion found in Ch. 3

of the book by Metcalf and van der Straten on the subject [22], and will only consider

one dimension. We can easily adapt the laser cooling force defined below to three

dimensions by dotting it with the laser’s k-vector.

Because the reemission of the photon is in a random direction, this step in the

process imparts no net change in momentum over many cycles, and so the force caused

by the entire process is only the force caused by the initial absorption:

Fabs = (h̄k)γp (2.11)

where h̄k is just the usual photon momentum and γp is the total scattering rate. For

a saturated system, the population is split equally between the excited and ground

states (with population share in the excited state defined as ρee). This allows us to

say that [22]

γp = γρee =
s0γ/2

1 + s0 + (2δ
γ
)2

(2.12)

where we have used the on-resonance saturation parameter s0 ≡ I
Is

and the sponta-

neous decay rate γ. Therefore, an atom at rest experiences a force in the direction of

k⃗ of magnitude:

Fabs =
h̄ks0γ/2

1 + s0 + (2δ
γ
)2

(2.13)

while it doesn’t matter yet since the atom is at rest, δ is the detuning in the atom’s
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reference frame.

To find the cooling force on an atom in motion, Metcalf et al. solves the optical

Bloch equations, incorporating the velocity of the atoms as a first order perturbation

[22]. The result is that we get a cooling force as a function of velocity:

F (v) =
h̄ksγ/2

1 + s
+

h̄k2sγδ

(1 + s)2(δ2 + γ2

4
)
v (2.14)

where we have substituted an off-resonance saturation parameter, s

s =
s0

1 + (2δ/γ)2
. (2.15)

It should be noted that we have used the non-relativistic Doppler shift for light.

The advantage of this approach is that since Eq. 2.14 is linear, we can try to treat

the system (in the pseudopotential approximation) as a simple harmonic oscillator

undergoing velocity-linear damping with a damping coefficient from eq. 2.14:

β =
h̄k2sγδ

(1 + s)2(δ2 + γ2

4
)

(2.16)

with an additional uniform radiation pressure force F0:

F0 =
h̄ksγ/2

1 + s
. (2.17)

Note that in Eq. 2.16, for red detuned light δ < 0 and so β < 0.

Scattering Rate and Simulating Photon Detection

An early attempt at paramterizing a laser cooling force was done by adapting the

scattering rate of the atoms. While we no longer use this method in our cooling

models, it will demonstrate how we calculate the scattering rate from the resonant

beam to simulate the data we actually get in the lab. It is worth emphasizing that in
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the real world experiment, our only route to probing any characteristic of the coolant

ions goes through their photon scattering rate, so good control over this feature is key

in any attempt to establish congruence between the real experiment and simulation.

We start with the photon scattering rate for a cycling transition [23]:

w(∆) =
sΓ/2

1 + s+ ( ∆
Γ/2

)2
(2.18)

where s is defined in the same way as eq. 2.15, Γ is the natural linewidth of the

transition, and ∆ is the detuning frequency in the lab frame. We can immediately

see that by plugging in ∆ = fr − fo, (where fr frequency of light resonant with the

transition and fo is the frequency of light observed by the atom) we can find the

scattering rate of an atom in motion as a function of its velocity and the frequency

of our cooling laser in the lab frame:

w(v) =

(
sΓ

2

)
/

1 + s+

fr − fl

√
1+v/c
1−v/c

Γ/2

2
 (2.19)

where we have, of course, said fo = fl

√
1+v/c
1−v/c

to account for the full relativistic

Doppler shift. By integrating Eq. 2.19 we can convert the output of our integration

engine (which provides per-body position and velocity data over time) into simulated

photon count data.

2.3 Benchmarking Experiments

Since it is so easy to mis-parameterize aspects of a physical system, bench-marking

a simulation environment is essential to demonstrate the validity of the simulations

we are conducting. Here we explore three bench-marking experiments that were

compared to either analytical or semi-analytical methods in order to provide a basis
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for the physical ‘realness’ of our simulations.

2.3.1 3-ion Crystal

First, we will discuss the frozen (that is, the minimum energy state) of a pure, 3 Be+

crystal. While the system only consists of 3 bodies, I will continue to use the word

‘crystal’ to emphasize its rigidity. For this discussion we will use the pseudopotential

approximation in both the analytical solution and the simulation. Since, for the

homogeneous 3-body case there are not multiple local potential energy minima in

which the ions could get ‘stuck’ in, we can find the global potential energy minima

by a simple force balancing technique. This straightforward problem is solved below.

Analytic Solution to 3-ion Crystal

For the analytical solution we will assume that the zero-velocity cooling laser pressure

is 0, that is, referring to Eq. 2.14, F0 = 0. In addition, we will assume that kz << kr

(ks are the spring constants for the analogous harmonic oscillator), so that the 3-ion

chain aligns along the z axis. Because of these two assumptions and the symmetry of

the problem, we can say that the minimum energy state of the small crystal consists of

a central ion at the trap center flanked by two ions in the axial direction at distances

of equal magnitude +z and −z (see Fig. 2.3).

Considering the atom at the +z position, by balancing the sum of the Coulomb

repulsion forces due to both the central and −z ion with the force due to the trap

potential, we can find the equilibrium position of this ion, +z. The magnitude of the

force due to the pseudopotential is:

Fp = ω2
zmz (2.20)
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Figure 2.3: The 3-ion crystal in question. Image made from (py)LIon simulation
discussed in Sec. 2.3.1. Note the significant axial displacement due to the F0 term in
our cooling laser model.

and the magnitude of the force due to the two Coulomb repulsions is

Fc = Fc1 + Fc2 = kee
2(

1

z2
+

1

4z2
) (2.21)

where we have again assumed single-ionization. Equating 2.20 and 2.21 and solving

29



for z yields:

z = (
5e2ke
4ω2

zm
)1/3 (2.22)

where ke is Coulomb’s constant. For an ωz = (2π)64kHz, z ≈ 4.922 · 10−5m.

Simulation Solution for 3-ion Crystal

We start by parameterizing a pseudopotential for parameters equivalent to that used

in the analytic solution using (py)LIon’s ‘linearpaultrap’ function. We then drop

the 3 ions in a 3 ion cloud (defined by the (py)LIon ‘createioncloud’ function) with

a radius of 1 · 10−4m. Next, we add a laser cooling force to the system defined

by Eq. 2.14, and allow the simulation to progress for 6 ms. By the end of the

simulation, all three ions have final velocities in the axial direction on the order

of 10−11 m/s (the radial direction velocities are on the order of 10−7 m/s, so it is

safe to say that the crystal is pretty frozen. The final z-positions of the ions are:

1.62912 ·10−5m,−3.29338 ·10−5m,−8.21588 ·10−5m. The two ∆z’s in this crystal are

exactly 4.9225 · 10−5m, demonstrating excellent alignment with our analytic results.

It should be noted that the entire crystal is significantly displaced from the trap

center, due to the non-negligible velocity-independent radiation pressure term, F0 as

described in Eq. 2.17.

2.3.2 Laser Cooling and Driving

We will divide our benchmarking of our two laser cooling models into two tests. First

we will confirm that the force defined in Eq. 2.14 is being properly integrated by

LAMMPS. For this we will study the simple case of a flying free ion. Next, we will

test both the damping rate and the steady-state amplitude of a single particle in a

psuedopotential, to ensure that our damping parameters are being properly included

in the simulation.
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Free (Untrapped) Ion

First we will find velocity as a function of time for a free ion traveling anti-parallel

to our cooling beam. We will start with Newton’s second law: F (v) = mdv
dt
. Writing

Eq. 2.14 in terms of Eqs. 2.17 and 2.16 and we get:

∫ tb

0

1

m
dt =

∫ vf

v0

1

F0 + βv
dv (2.23)

evaluating these integrals means that

tb =
m

β
ln

∣∣∣∣F0 + βv0
F0 + βvf

∣∣∣∣ (2.24)

where tb is the amount of time the cooling laser has been on, v0 is the velocity at

the moment the laser is turned on, and vf is the velocity at time tb. Recalling that

β is negative as defined in Eq. 2.16, we can see that tb > 0 for v0 > vf . Since it is a

bit programmatically inconvenient to define an initial velocity for our ion, we simply

accelerate it with a uniform force for a time, ta. Thus,

v0 =
Fd

m
ta (2.25)

and substituting Eq. 2.25 into Eq. 2.24 and solving for vf (tb)

vf (tb) =
F0

β
(e

−|β|tb
m − 1) + e

−|β|tb
m

Fdta
m

(2.26)

where we have used β = −|β| strategically to emphasize that these exponentials

decay. As expected, we see in Fig. 2.4 that there is perfect alignment between the

Eq. 2.26 and the linear cooling method. This comes as no surprise since we are

literally applying this force, but provides the peace of mind that our laser cooling

force is properly integrated into our simulations.
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Figure 2.4: Position and velocity plots over time for a free ion experiencing the laser
cooling force defined by Eq. 2.14. The overlayed velocity curve was created directly
from Eq. 2.26, demonstrating a successful benchmark of our laser cooling model.

Trapped Ion

We will now compare the predicted velocity-damping to a simulation of single ion

in a pseudopotential with some arbitrary initial displacement. The results of this

simulation are shown in Fig. 2.5, where we plot the position and velocity of an
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ion oscillating in the trap as its motion is damped by the laser cooling force. The

analytical damping curve for such an ion is overlayed for benchmarking.
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Figure 2.5: The analytic curve is generated using the same cooling force as in Fig.
2.4. The inset plot shows that the discrepancy between the curve and the resultant
data is simply due to the F0 term and not indicative of an integration error.

The slight discrepancy seen in Fig. 2.5 in curve and simulation at high tb is likely

due to the F0 term, which was not included in the curve generation. While at this

point it seems to be safe to say that we have properly encoded the cooling force into
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our simulations, we will include the damped-driven oscillator as well.

By applying a uniform electric field that is oscillating on-resonance with the ion’s

secular frequency our system becomes a textbook damped, driven harmonic oscillator.

The steady-state amplitude for such a system is given by

A =
Fd

|β|ωr

. (2.27)

We again see pretty close alignment between our expectations and the simulation

output, with the slight downward shift again due to the F0 cooling force term. We

can now move on, confident in our understanding of our cooling schemes.

2.3.3 Multi-species Crystals

Benchmarking the geometry of frozen, multi-species (‘mixed’) crystals is very similar

to what we did in 2.3.1, except that it is often simpler to take an energy minimization

approach. Professor Hanneke has a pre-existing Mathematica notebook that generates

images of minimum energy positions for a given crystal size and composition. This

notebook has been qualitatively benchmarked against real world crystal images8 and

functions by minimizing the system’s energy through numerical calculations. There

are some considerations to be made for which system parameters we want to make

this comparison on. Interesting and useful crystal structures often involve a moderate

or large number of O+
2 ions, so we can get a complete view of the Coulomb ‘shell’

they create around the Be+ core. We also want enough Be+s so that the crystal

has a sizeable core, but it is beneficial to not have so many that the Be+s lose their

chain form, which is easier to analyze. In addition, tighter axial confinement (and

slightly looser radial confinement) exaggerates this ‘shell’ structure. Given these

considerations we decided to study a 10 Be+, 10 O+
2 crystal with trap paramaters of:

8A student working in the Hanneke lab may refer to Professor Hanneke’s March 8, 2023 Lablog
post to see this comparison.
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Figure 2.6: The horizontal blue line indicates the steady-state amplitude calculated in
Eq. 2.27. While hardly visible in this figure, the discrepancy between the calculated
steady state amplitude and the final oscillation amplitude due to the F0 term in our
laser cooling function persists.

r0 = 1.25 · 10−3 m, z0 = 1.5 · 10−3 m, κ = 0.17, Ω/2π = 7.3 · 106 Hz, U = 31 V, and

V = .7 V. These yielded the 4 secular frequencies of ωx,y Be+ = 507 kHz, ωz Be+ =

169 kHz, ωx,yO+
2
= 132 kHz, and ωzO+

2
= 90 kHz.

The outputs of these two methods are shown in Fig. 2.7. Note first the general

similarities in structure - both methods produce a nearly linear chain of central Be+
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Figure 2.7: The top two plots show the results of the numerical minimization tech-
nique, and the bottom two come from our (py)LIon simulations. The species are
indicated by color in both, with the outer, blue points indicating O+

2 ions and the
inner, black points indication Be+. Note the general congruence in crystal spacing,
radius, and length as well as the slight deviation in structure details, which originates
from the many similar low-energy configurations that are extremely close in structure
to the true low-energy state.

surrounded by two rings of O+
2 . The radii of these rings are both about 40 µm and

the axial distance between the rings are about 40 µm as well. There are some minor

differences in the relative positions of some of the ions. This is likely due to the fact
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that even though both methods find a state near the minimum energy state, there

are many crystal states with energy very close to the true global minimum. Because

the (py)LIon simulations start with a high-energy ion cloud that it then cools down,

it is very likely that this system got ‘stuck’ in a local minimum energy state that is

just slightly different from the true energy minimum.
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Chapter 3

Quantum Logic Ion Control

Simulator

In this chapter we will discuss, in more detail, how we transplant the physics of Ch 2.

into the simulation environment. This will include both the low level computational

tools we use and the overall structure of the QLICS program. This chapter is meant

to provide an understanding of the internal structure of the program and highlight

its capabilities and limits. It is not meant to be a user manual, that information will

be found in the repository documentation, [15].

3.1 Simulation Philosophy

Conceptually, molecular1 dynamics (MD) simulation (the framework of numerical

simulation we used) is very simple: it is the repeated process of calculating the

net force felt on bodies, updating their momentum using F⃗ = mdv⃗
dt
, and evolving

their positions over a set timestep duration. In other words, we are using numerical

1While the term “molecular” might suggest a chemical component to this simulation approach,
it actually has more to do with the context MD simulations are commonly used in (biophysics,
chemistry, etc). MD simulation is nothing more than the iterative application of Newton’s 2nd Law
and our simulation results are therefore confined to representing phenomena that arise from classical
dynamics.
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methods to find solutions to differential equations by evolving step-by-step. Naturally,

this discretization process will incur some error, and there are different ways of doing

this integration process which produce different types of error (for different systems).

In the following section, I will introduce a couple of the core principals of this subject

and explain the pros and cons of various integration methods.

3.1.1 Integration Methods

There are several methods different methods one can use for applying this prescrip-

tion, with different benefits and drawbacks, as well as different positions in the (gen-

eral, but as we will see, not always consistent) trade-off between computational com-

plexity and error accumulation rate, [24]. In other words, different approaches have

different error scaling with the timestep size, ∆t, and decreasing ∆t, of course, has an

associated computational cost. For our system, we have exclusively used the Verlet

integration2 methods in the simulations reported in this work (besides Fig. 3.1).

Euler Method

To explain why we believe this algorithm is best suited for our system, we will contrast

it with two other common integration methods: the basic Euler method, and the

fourth-order Runge-Kutta method (the primary alternative we would realistically

use). Our basic problem is that of evolving the function defining the positions of each

ion forward in time. Since the spatial dimensions are clearly independent in a general

3D harmonic oscillator, for this analysis we will take the differential equations defining

each ions’ position to be separable.3 Therefore, we can consider just one dimension for

simplicity. Let x(t) be the position function of a body over time, with time-evolution

2More specifically, we use the velocity-Verlet algorithm.
3In our actual simulations, we can have cross dimensional terms in the modulating electric field.

However, that coupling won’t change the conclusions reported here so we ignore this complication.
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defined by t = t0 +∆t. Then by simply applying the Taylor series:

x(t) = x(t0) + ẋ(t0)∆t+O(∆t2) (3.1)

and by discounting the second-order terms we have the Euler method for evolving

functions with a single calculation.4 Because x(t0) is either an initial condition or

a previously calculated value, the single calculation in the second term means this

method provides excellent time scaling. Unfortunately, it has been shown that this

method of integration has an unbounded error in general for periodic systems, causing

the energy of the system to not be conserved [25]. Often, this phenomenon happens

surprisingly quickly, Fig. 3.1. This is a function of it not being a symplectic integrator

(an integrator that preserves the phase space volume in conservative systems) [24, 25].

This makes it essentially useless for problems that involve oscillations about an energy

minimum over long periods of time (such as an ion oscillating about a minimum in

the potential caused by a trap and its neighbors) despite the efficient timestep scaling.

Runge-Kutta Method

Looking at Eq. 3.1, it is clear that the primary candidate for improvement of the

method is going to be in the second term (the discounting of the higher-order terms

can be justified with reasonably small ∆t). The Runge-Kutta integration method

attempts to solve this issue by expanding the second term into multiple samples.

While the simplest of these solutions would be the “midpoint method”, a method

where ẋ is evaluated at t0+∆t/2 instead of after the full timestep duration, the most

common method of this class used in MD simulation is the 4th order Runge-Kutta

4Note that here we only provide the position equation. However, since we can’t query ẋ directly
(we are trying to solve a second-order differential equation), we must also step through the velocities
by the same technique. While we don’t give this simple algorithm explicitly, in Appx. C, you will
see this concept in the provided RK4 and VV algorithms, and it can be easily transferred to the
Euler method.
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Figure 3.1: Comparison of different integration methods estimating a harmonic oscil-
lator with a frequency of about 100 kHz over 1ms. We zoom in on the first and last
tenth of the time range to show the short-term and long-term behavior of the inte-
grators (leaving the Euler method out of the final tenth since it has gotten absurdly
bad at this point). Note that while the fourth order Runge-Kutta method is truer
to the initial conditions of the system in the short run, the Velocity-Verlet algorithm
preserves the system’s total energy in the long run. Timestep size was significantly
increased to accentuate the difference between the two methods.
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method, RK4 [26]. RK4 simply samples the slope of the function to be simulated

at 4 different positions, see Appx. C for a general definition and its application to a

physical system. RK4 has been shown to be capable of handling both SHM and more

complicated oscillators [25]. However, it is not symplectic and so does not provide

energy conservation, even with adaptive step sizing. Therefore, over long periods

of time, it will diverge from the analytic solution for a system defined by a time-

independent Hamiltonian [24]. In addition, and perhaps more significantly, because

it requires 4 calculations per timestep, it provides worse timescaling.

Velocity-Verlet Method

Like the Euler method, the equations defining the velocity-Verlet algorithm will be

immediately recognizable:

x(t) = x(t0) + v(t0)∆t+ a(t0)
∆t2

2
(3.2)

v(t) = v(t0) + [a(t0) + a(t)]
∆t

2
. (3.3)

By simply using Eq. 3.2 to find x(t), the summed forces at x(t) to find a(t), and

plugging into Eq. 3.3, we can evolve our system forward [27]. For an explicit al-

gorithm of this process, see Appx. C. It has been shown (and is plausible, given

the direct treatment of the second derivative) that this integration method is sym-

plectic [25]. Note that this only means that energy is conserved on average, not at

every timestep (in truth, the total energy calculated by the VV method oscillates

over time). In addition, the 2 calculations keep our time scaling better than RK4.

However, the velocity-Verlet actually has worse error than RK4 in the short term, as

seen in Fig. 3.1. In short, the choice between velocity-Verlet and Runge-Kutta boils

down to our assessment that this is an energy conservation problem, not an initial

value problem. For us, energy conservation (and time scaling) is more important
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than short-term accuracy to the initial conditions, since they are unknown due to the

thermal distribution of the ions in the actual experiment.

3.1.2 QLICS as a Curated Subset of LAMMPS’ Capabilities

The program we use to conduct our integrations is LAMMPS (Large-scale Atomic /

Molecular Massively Parallel Simulator), [26]. While the LAMMPS software is often

used in material science and biochemical settings, QLICS really only uses LAMMPS

for its time integration, Coulomb and electric field force calculation, and kinematic

output (as opposed to the more advanced features necessary when using LAMMPS to

model more complicated systems). We have already discussed the different integration

options LAMMPS offers, but at the time of this writing QLICS only supports the use

of the velocity-Verlet algorithm. One important point of note is that LAMMPS does

allow for dynamically changing the timestep duration, and this is a feature perserved

in QLICS. Each timestep, QLICS has to ability to use an explicitly defined force to

apply laser cooling to the system. In addition, when we are using the pseudopotential

approximation, QLICS, via (py)LIon, defines the trap as an explicit linear restoring

force (i.e., a Hooke’s law force) with a characteristic frequency that is the secular

frequency.5 Finally, we can provide LAMMPS with electric fields of arbitrary space

and time dependence (although QLICS limits this to second-order space dependence

and sinusoidal time dependence). LAMMPS superimposes the electric fields internally

and finds the force on a per-ion basis using F⃗ = qE⃗. Finally, although LAMMPS’

thermo output has capabilities much beyond what is accessed with QLICS, we only

use its per-atom position and velocity output. LAMMPS has the capabilities to

mitigate inter-ion force calculations scaling quadratically with the number of bodies

5It should be noted that since this frequency is dependent on the mass of the ion, we require the
(py)LIon method to execute the pseudopotential calculation for each species. This is because we
have observed that, when setting the pseudo parameter of the pylion.functions.linearpaultrap
function to True, even when ions=‘all’, the trap will only use the secular frequencies of one species,
an issue worth warning the user about.
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in the simulation by limiting the pairwise interactions it includes, [26], however we

avoid making this simplification because we typically study relatively small crystals

(≈ 10−30 bodies), and because it doesn’t seem to be common practice in these types

of simulations [19].

3.1.3 High-Performance Computing

Throughout this project we have been the beneficiaries of the College’s new high-

performance computing (HPC) system, FrostByte [28]. Before we started running

simulations in the QLICS environment, we were able to submit simulations to the

system in parallel, massively6 increasing our simulation capacity. However, once

we started focusing on the online optimization of our systems, we realized that we

could not simply use the SLURM task manager to distribute tasks across nodes,

since the input parameters for different simulations now required the output of the

previous one. A major future development goal for QLICS will be figuring out how to

reincorporate parallel processing into the workflow, for both optimization and batch

simulation routines. This may be done at the LAMMPS level, the ‘batch’7 (that is,

the per variable step in a variable sweep) level, or the optimization level. While this

has limited the parallelization of the machine-learning driven optimizations done in

QLICS, we have conducted large scale simulations using pure (py)LIon scripts where

we have been able to see significant (order of magnitude) reduction in total simulation

time. An example of data generated by this process is that of Fig. 4.2.

6At times we were able to run more than 10 simulations in parallel. This brought experiments
that we would project to takenearly a month on a single computer down to a few days on the HPC
system.

7I am using ‘batch’ in a similar but different sense in the following section.
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3.2 Interlude: Context and Key Definitions

I want to briefly pause to highlight how QLICS itself fits into the bigger picture of

our numerical integration discussion. Throughout this work, we refer to ‘experiments’

and the fact that QLICS takes experiment configuration files as input. While we

discuss the details of such files’ content in the following section, it may be helpful to

first formally define ‘experiment’ as a list of instructions defining the system we are

integrating, how we integrate (‘evolve’) it, and how we process the simulation results

(integrating Eq. 2.19 over time) to create a mock experimental output. This three-

step process can thought of in relation to the LAMMPS integrator directly: LAMMPS

code generation, LAMMPS simulation execution, and LAMMPS per-atom position

and velocity vector output at each experiment timestep. Note that since LAMMPS

thermo output provides only atom position and velocity vectors over timesteps, we

can either convert these values into a scattering rate with Eq. 2.19, or a mean

RMS velocity for the system. Of course, we can visualize the per-atom position and

momentum data directly as well, but we try to keep our reliance on this approach

to a minimum in our results, since we cannot duplicate this measurement in the real

system. Importantly, the times at which we perform the first type of integration are

defined by the detection sequence and are typically time frames much shorter than the

full dynamics simulation. We then output these photon counts with timeframe tags as

well as sweep variable identifiers (for instance, the frequency of the modulating field

after which we performed the detection), Appx. B. The purpose of this interjection

has been to just orient the reader and emphasize the central, most basic functionality

of QLICS. There are many important features in the program that exist ‘around’ this

core function, as discussed below.
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Figure 3.2: QLICS launch and main menu. We will only discuss the ‘Run Experiment
From File’, ‘Run Experiment Batch From Directory’, ‘Optimize Experiment with M-
LOOP’, and ‘Analyze Completed Experiment’ here as they are the most important
and the only ones needed to understand the program’s functionality.

3.3 QLICS

While we have expanded beyond direct use of (py)LIon, the period of using that

package as our simulation launchpad set the groundwork for the Python-LAMMPS

work flow that we carry over into QLICS, namely, the process of turning our Python-

defined system into LAMMPS code via a Jinja template [19]. The primary need that

(py)LIon was unable to simply fulfill for us was the ability to easily and automatically

reproduce experiments with slightly shifted parameters, to allow us to explore the

experimental parameter space efficiently. In this chapter, I will start the discussion of

the program at the highest level of abstraction before descending down and discussing

the innards of the subroutines we introduce. I will stop a level of abstraction above

explicit discussion of the classes and functions used in the code, information on this

level will be available in our docs, [15].

3.3.1 Modes of Use

At the highest level, QLICS can be used in 1 of 4 modes, offered in the command-line

interface (CLI) upon the initial start of the program, Fig. 3.2. These 4 modes and
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their functionality are outlined in Fig. 3.3. The most fundamental of these is the

‘Run from File’ mode.

Running Individual Experiments

As seen in Fig. 3.3 and as one might guess, this ‘Run Experiment From File’ mode

itself can be treated as a subroutine for both the ‘Run from Batch’ mode and the

‘M-LOOP Optimization’ mode. At the heart of the mode is the ‘Execute Experiment’

subroutine, which we will deconstruct in Sec. 3.3.2. This mode takes an INI8 file that

defines the experiment and simulation specifications as its input. Then, if a detection

laser is defined, returns a CSV file that replicates the QLIC output (photon count

vs modulating frequency, see Appx. B). In all simulations, a ‘dump’ TXT file is

generated from the LAMMPS ‘thermo’ output (via (py)LIon), see Ref. [19, 26] and

their associated documentation. This simple workflow (shown in Fig. 3.3) comprises

the ‘core functionality’ of QLICS.

Running Sets of Experiments

The ‘Run Experiment Batch From Directory’ mode is a very simple application of

the ‘Run from File’ subroutine. This mode takes a directory of INI files as input and

iterates through them9 running ‘Run from File’ for each. It should be noted that the

output from this mode is not aggregated in anyway and so a unique output directory

is created for each INI in the input directory. This mode is most useful for manually

investigating the changes in the results of experiments with changes to the initial

characteristics of those experiments. For example, this mode could be used to submit

a series of experiments (say a frequency sweep tickle experiment) for many different

8INI files are plain text configuration files developed for some of the earliest MS-DOS systems.
Although more familiar formats like YAML or JSON offer more modern features, INI’s single level of
nesting (the often-cited drawback) is sufficient for our needs, and its syntax provides, in my opinion,
a visually straightforward style for defining experimental sequences.

9Serially, a natural improvement for this program will be the optionality for parallel execution in
HPC systems.
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Run Experiment Batch From Directory

Run Experiment From File

\data\experimentexperiment.ini Execute
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positions.txt
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Key:
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File
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Figure 3.3: Block diagrams of the three major simulation modes of QLICS.
∫
w(v) dt

refers to the scattering rate defined by Eq. 2.19 (which, of course, has a timestep-wise
time dependence). The purpose of this diagram is to highlight the logical relation-
ship between major aspects to aid the high-level discussion of this chapter. To this
end I elected to sacrifice strict accuracy for clarity by approximating and omitting
several programmatically important relationships that would obscure this discussion.
A reader interested in getting these details exactly will find them in the QLICS doc-
umentation [15].
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crystal compositions, as was done in Fig. 4.3. This mode is used throughout the

results of Ch. 4.

Optimizing Experiments

In many ways the ‘Optimize Experiment With M-LOOP’ mode can just be thought of

as an automated version of ‘Run from Batch’. Here instead of manually defining each

experiment with explicit INI files, we provide a ‘template’ INI file. This sets the gen-

eral structure of the experiment we wish to optimize. In addition, we supply another

configuration file, specifically for M-LOOP. This python (.py) file serves two purposes.

First, it defines the cost function that the machine learner program aims to optimize,

as well as how we measure the uncertainty from each experiment. The definition of

the cost function must be carefully considered so that the learner actually optimizes

a physically significant aspect of the experiment (as opposed to trivially optimizing

the cost function via some loophole) an example of which can be found in Appx. B

and more detailed discussion on setting up these optimizations will be available in the

QLICS documentation [15]. Second, the .py file configures the learner itself, identify-

ing the parameters it is allowed to control, the range of the parameter space we allow

it to explore, the type10 of learning we want to use, and the termination conditions.

In addition to the typical CSV and TXT outputs that accompany each experiment, a

successfully complete optimization run will generate ‘controller and learner archives’

as explained in the M-LOOP docs [29]. These archives can easily be visualized using

mloop.visualizations.show all default visualizations from archive() with

the archive files as arguments described in the M-LOOP documentation, see Fig.

4.11 or [29] for examples.

10See sec. 3.4 and [16] for more discussion on the pros and cons of various learners.
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Analyzing Completed Experiments

Disconnected from the previous three modes in that it doesn’t execute a simulation,

the ‘Analyze completed Experiment’ mode simply serves as a general purpose tool

for plotting the outputs of an experiment. While it is likely that the user will want to

customize their own data visualization, this mode provides a quick and dirty way of

checking that individual simulations are behaving as expected. This mode can process

either the CSV or TXT output files discussed earlier. If a CSV file is taken as input,

it will simply plot a photon count vs. frequency plot, akin to the QLIC output.

If a TXT file is taken as input, the user has the option to select either ‘Whole’,

‘Individual’, or ‘Crystal Image’ via the CLI dialogue. If ‘Whole’ is selected, the RMS

velocity of the entire crystal structure11 is plotted as a function of time. If ‘Individual’

is selected, per-ion plots of either position vs time and velocity vs time (or both) are

generated. Finally, if ‘Crystal Image’ is selected, axial and radial flat projections of

the crystal (at a defined time) are generated (as well as a 3D matplotlib visualization

should the user request). The user is given the ability to define a separation index

for a dual-species crystal, so that ions of different species are color-coded. While

there are obviously many features that could be easily added to this mode, I have

kept it very bare-bones in the interest of development time. This is an area ripe for

improvement in future iterations of the program. As will be discussed in Sec. 3.3.1 all

of the visualization output is stored in the ‘data’ folder. The sub-folders contain the

prefixes ‘ph count’ and ‘analysis’ as appropriate (the former being used for analysis

of CSVs and the latter for TXTs).

More Information on Input and Output

While we have explained the use of INI files in the context of the program, we have not

yet discussed their internal structure. Exact syntax documentation can be found in

11An easy area for improvement for this visualization would be the ability to plot RMS by species.
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Appx. B and a more detailed discussion will be available in the QLICS documentation

[15]. Here we will just talk about their broad principles in preparation for Sec. 3.3.2.

While the predominate purpose of the INI files is to define the simulation itself,

it is also used as a sort of memory storage for QLICS in the LAMMPS simulation

creation process,12 a feature worth mentioning, but that does not affect the user.

In the INI file, we define the ‘universe’ as two sections, one simply listing the

universal constants, and another initializing our ion types, [15]. Ion-type initialization

includes defining the species name, charge, mass, and transition of interest (including

frequency, natural linewidth, and saturation). We next initialize a ‘sim parameters’

section, which is concerned with broad characteristics of our simulation (evolution

sequence and step size, boundary style and how we handle lost ions etc.) [15]. Very

similar to the ‘sim parameters’ section is the ‘detection’ section (related to, but not

to be confused with, the ‘scattering laser’ object), which defines our detector size and

location, as well as the detection sequence.

After the mandatory initializations, the user may introduce ‘object’ initializations.

These are INI sections that represent ‘devices’ in our experiment, namely, cooling

lasers, scattering lasers, traps, ion clouds, modulating electric fields, or the important

iteration object (‘iter’). With each type of object, a relevant set of key-value pairs

must be defined [15]. At the end of the INI file is the command list. While the object

declarations are just that, declarations, the command list is where these predefined

objects are inserted into the simulation program. This process is highlighted in Fig.

3.4. The QLICS program is different than perhaps a more typical and flexible program

in that, while objects can be defined and not used, under typical conditions, each

object may be referenced only once in the main command list. Because of this, objects

may be referenced only by ‘type’ in the command list; see Fig. 3.4. While objects

may not be reused in the overall command list, they can be reused by using the ‘iter’

12While this doesn’t disrupt the function of the program or hurt its usability, it may be better
form to split these two tasks into seperate INI files in the future.
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object’s command list (although again they can’t be reused in this sub command

list either). The ‘iter’ object can be thought of basically as a loop, allowing for

concise programming of repetitive experiments without compromising the emphasis

on ‘explicit-ness’ we are striving for, see Fig. 3.4.

It should be noted that in addition to appending objects, the command list also

takes the evolve and remove commands. These define the sequence in which we step

forward through our simulation and allow for the explicit removal of objects previously

appended. You may notice that the detection sequence is handled differently than the

evolve sequence (there is no analogues detect command). This is because detection

is treated as a purely passive activity (in other words, we do not currently incorporate

recoil due to resonant beams in the ion dynamics) and therefore the entire detection

calculation is done after the simulation is completed. Often our detection calculations

take a significant amount of time to complete (on par with or more than the time

of the simulation itself). Improving the efficiency of our photon count calculation

algorithm is another potential area for vast improvement in QLICS’ performance.

Finally, it should be noted that QLICS has a hard-coded output system (similar

to QLIC). Upon execution of the ‘Run from File’ subroutine, a directory with the

current timestamps as its name is created in the ‘data’ directory. This directory serves

as a kind of working dump location, where the simulation INI, CSV (if detection is

used), and TXT files, along with the generated LAMMPS code and LAMMPS .log

file are saved for future reference. As mentioned earlier, the analysis directories are

also automatically stored in the data folder. While all potentially useful information

is saved in ‘data’, the folder frequently because unwieldy and so it is advised to

remove ‘data’ from the QLICS folder before running high numbers of experiments by

either ‘Run Experiment from Batch’ or ‘Optimize Experiment with M-LOOP’. The

additional ‘Controller’ and ‘Learner’ archives from M-LOOP are stored at the same

level as ‘data’.
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Command List:

Iteration Object

Iteration Command List:Iteration Object Pool

Object Pool

Universe Declaration LAMMPS Parameters Detection ScheduleEvolution Schedule

Simulation Object
Declaration

Simulation Object
Declaration

Simulation Object
Declaration

Simulation Object
Declaration

Simulation Object
Declaration

Simulation Object
Declaration

Simulation Object
Declaration

Simulation Object
Declaration

Resonant Laser
Definition

Simulation Object
Declaration

Simulation Object
Declaration

Simulation Object
Declaration

Simulation Object
Declaration

Scan Variable
Identification and

Sequence

Iteration Evolution
Schedule

Iteration Detection
Schedule

Evolve Evolve

Evolve Evolve Evolve

Figure 3.4: Block Diagram depicting how a typical INI file, with iteration object,
is structured. Starting from the top row: square rectangles indicate mandatory
simulation-wide configurations, color-coded based on accessibility. The main object
pool indicates the initial definition of ‘ordinary’ simulation objects (i.e. traps, ions
clouds, modulation fields, cooling lasers, etc). Note that each ordinary simulation
object may be explicitly accessed only once. The iteration object acts as a ‘mini’
experiment in that it access objects from its own pool, an explicitly-defined subset
of the primary pool and contains its own evolution schedule, detection schedule, and
sub-command list. The iteration loop is defined by the iteration variable, a variable
of an ordinary object picked out from its own pool. Finally the main command list
appends ordinary objects by referencing their type, with order defined within the ob-
jects themselves, indicated by color coded commands (type-order is represented here
by position in the main pool going from top left to bottom right). The red commands
represent the explicit removal command.
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3.3.2 The ‘Execute Experiment’ Subroutine

So far we have discussed at the level of the ‘Run Experiment by File’ subroutine.

However, at the heart of this routine (and by extension every aspect of QLICS besides

the ‘Analyze Completed Experiment’ mode) is the ‘execute experiment’ subroutine

as seen in Fig. 3.3. We will not discuss this in as great of detail, but will just go

over a few points of interest. This section should be thought of as a bridge between

the discussion of the preceding section and the function-by-function breakdown in the

documentation [15].

Processing and Rewriting INI

After receiving the input INI, QLICS processes its information into memory and

rewrites the INI in the now initialized dump directory. This seemingly pointless

operation is done for several reasons. First, in the processing stage, QLICS starts with

the experimental sequence and grabs the previously defined objects as needed. This

means that objects that are defined, but are never accessed are dropped from memory

and not stored in the ‘dumped’ INI, preventing input file bloat since we commonly

copy and modify INI files instead of writing new ones from scratch. Second, this

allows QLICS to use the new INI file as a modifiable document for the storage of what

essentially act as ‘public’ variables. While there may be drawbacks to this atypical

flow of information, it significantly helps keeping one very important public variable,

our timestep duration, uniform across the program. Since so many of the equations

relating to our objects depend on accessing a consistent value, this technique seems to

be acceptable. Finally, when in our ‘Optimize Experiment with M-LOOP’ mode, we

override the appropriate values in the ‘copied’ INI file with the values the M-LOOP

learner wants to test at this point. To make it very clear, under no circumstances is

the original input INI file modified because of this ‘copying and editing’ scheme.
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Figure 3.5: Inside of the ‘Execute Experiment’ subroutine introduced in Fig. 3.3.
Operations managed by (py)LIon are demarcated green.
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Experiment Creation

After the INI is copied and we complete a couple of simulation preparation tasks,

we enter the ‘Command List Processing Loop’, Fig. 3.5. This routine is the ac-

tual process of turning our INI file objects into LAMMPS code. QLICS goes down

the experimental sequence, accessing each command and conducting the appropriate

operation to append it to the simulation. For example, if the command indicates

the appending of an ion cloud, the program will access the appropriate object in-

formation (in this case, ion type, cloud radius etc.), and generate the appropriate

LAMMPS code. When the (py)LIon-defined functions are suitable for generating

LAMMPS code, those methods are utilized, otherwise QLICS generates LAMMPS

code by its own means. This is also where the ‘iter object’ is expanded, with this

appending sequence being called across their command lists with the appropriate

variable overrides for each iteration. Similarly to experiment objects, removal and

evolve commands are added in by appending simple ((py)LIon-defined) LAMMPS

commands to the (py)LIon sim class [19]. After this process is complete, (py)LIon

submits the simulation and LAMMPS runs it.

Scattering Data CSV

An important aspect of our output already touched upon is that the CSV output is

actually generated off of the TXT output. In other words, the simulation is complete

and the TXT file is created before QLICS, accesses the scattering laser object, and

calculates the number of scattered photons detected. This output is then what M-

LOOP uses, not the full TXT output.13

13Though we have discussed loosening this restriction in future iterations of QLICS.
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3.4 Machine Learning for Experiment Optimiza-

tion

While we use the machine learning package out of the box, without any additional ed-

its, it is still worthwhile briefly discussing the how the program works, and especially

how our approach differs from other supervised learning techniques. This understand-

ing informs how we set our termination conditions, as well as how we decide which

of the provided learner models to use.

3.4.1 Brief Overview of Machine Learning for Online Opti-

mization

We can cast our discussion of QLICS’ structure into an ML format by simply treating

each execution of the ‘Run Experiment from File’ subroutine as a stochastic process

taking a set of input parameters and returning a cost that is a function of those

parameters (as well as some uncertainty).14 The model is then simply fitting to a

set of correlation lengths connecting each parameter to the cost function [16]. Unlike

other forms of supervised learning, where one is trying to fit a model to preexisting

data, in online optimization, the model is actively interacting with the source of the

data, and is deciding, at each step, which parameters to query the cost at. While the

intelligent selection of input parameters is a benefit, the fact that experiments must

be completed before the next selection is made greatly hampers the total number of

data points we can use to train the model (often less than a hundred is necessary).

Fortunately, the potential for extremely fast learning has been shown in the online

optimization of some complex physical systems using Gaussian Process (GP) learners

[16]. While M-LOOP ships with several learning ‘controllers’, we generally stick to

the neural network or the GP learner controllers, with conventional wisdom and the

14Just like the original M-LOOP experiment [16].
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M-LOOP documentation suggesting that neural networks are more efficient for high-

dimensional parameter spaces due having better scaling with the number of data

points to be fitted [29]. While it would be ideal to set our termination condition off of

some kind of physically important cost threshold, at this point, we have predominately

just been setting time or run number limits to ‘get a feel’ for the parameter space.
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Chapter 4

Results from Preliminary

Applications of QLICS

While the primary ‘outcome’ of this thesis is the existence of the QLICS program

itself, it is worthwhile to look at the results from some initial applications of the

program, relevant to our lab. This will demonstrate the flexibility of the program,

show some realistic use-cases, and serve as a starting point for our understanding of

this system. Conceptually, I’ve divided the sections of this chapter into two categories.

In the first category (Secs. 4.1, 4.2), we study relationships that we already had a

relatively strong physical intuition for. Therefore, the ‘results’ of the simulation serve

to both confirm our understanding and illuminate some details of the relationships

that we need numerical methods to fill in. Because these are not open-ended explo-

rations of the parameter space, we tend not to use the M-LOOP features in these

types of studies, and just explicitly define experiments to test the relationships we

want to.1 While this more ‘traditional’ approach is perhaps less exciting than having

a neural network distill unexpected relationships from the system, it demonstrates a

1Because it can be a bit confusing, I want to emphasize that the exploration of systems we have
some physical intuition for is not the same as benchmarking a system that can be solved analytically.
Experiments in this first category are still ‘explorations’ not ‘confirmations’.
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very practical use of the program for our lab. As we will see, these types of experi-

ments can provide confirmation of and help us to understand the degree to which we

can improve our number-resolution in detecting dark ions by using a heavier coolant

species. It is worthwhile to confirm this assumed relationship and estimate the ex-

pected improvement prior to introducing the new species in the experiment since

adding this new species is a non-trivial project (in general, requiring us to open the

chamber, design and manufacture a new oven, and introduce appropriate ionization

lasers).

The second category (Sec. 4.3) introduces some examples of more open-ended

‘experiments’ driven by our machine-learning based optimizations. A technique of

interest and promise that was distilled by this exploration-focused research is the heat

preparation sequence, Sec. 4.3. In Ch. 5, I will introduce other areas where we have

conducted initial optimization experiments. Although the results of many of these

experiments were not extremely conclusive, there is a lot of room for improvement

in their execution, and it is very possible that a more detailed exploration of these

corners of the parameter space will yield useful results in the future.

4.1 Number-resolution Study

High number-resolution for the detection of both O+
2 and O+ is key to showing that

we are driving the dissociative transition we wish to demonstrate. The general goal

is to develop a scheme where we can see the signal of O+
2 decrease step-by-step in

congruence with the rise in O+, thereby providing strong evidence that we are dis-

sociating our state-prepared O+
2 generated per [11]. Throughout this chapter, we

consider the ‘signal’ of such an experiment to be the difference in photons counted

when tickling on-resonant with the ions’ secular frequency and the number of pho-

tons counted when tickling off-resonantly, often normalized by the off-resonant count

60



value. In terms of experimental pulses, this is often done by modulating off-resonance,

detecting, re-cooling, modulating on-resonance, detecting, re-cooling, modulating off-

resonance, and detecting again. Here, I call this the ‘one-look detection sequence’,

and it is really just an abbreviation of the linear sweep across the frequency range. It

has been previously shown that, in some systems, this relationship scales linearly with

dark ion number for some regimes [23]. As such, the problem of increased number-

resolution is expected to look something like Fig. 4.1. However, we have seen many

cases where this scaling has been poor, see Fig. 4.2. In Fig. 4.3, a simulation of the

photo-dissociation experiment mentioned above, we see both poor and good number-

resolution (in O+
2 and O+, respectively). This implies that the masses of our dark

and coolant ions are very important to the LCF-MS signal, as we will be discussed

below.

4.1.1 Crystal Geometry

It is clear that the geometry of the crystal plays a significant role in the degree of inter-

species coupling we observe in our system since the Coulomb interaction (for fixed

charges) is only dependent on the distance between bodies. While we will use this

concept of average inter-species coupling throughout the chapter, it is most obviously

seen in the geometry of the frozen, pre-tickled state of a crystal. Letting n be the

number of coolant ions and m being the number of dark ions, we can define a ‘mean

inter-species Coulomb interaction parameter’, d as:

d =
1

nm

m+n∑
i=n

n∑
j=0

∥r⃗ij∥−2 (4.1)

here, of course,

∥r⃗ij∥ =
√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2, (4.2)
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Figure 4.1: A model of what we might expect the fluorescence data of an experi-
ment with high-number-resolution (top plots) vs. an experiment with low-number-
resolution (bottom plots). The number-resolution is therefore related to the signal-
to-noise ratio of the plots in the right-hand column. Note that while this idealized
data looks essentially Lorentzian, our actual data represents a combination of both
Lorentzian and Gaussian processes.
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Figure 4.2: An early simulation of the ‘tickle’ experiment, with clearly poor number-
resolution. Unlike the other simulations in this chapter, this experiment was done with
an axial tickle. The number-dependent resonance shift is an additional issue limiting
number-resolution capabilities, but it seems to be limited to axial modulations. We
(and others, [30]) have seen resonance responses create both positive and negative
differences from the baseline, although the decrease is more reproducible in simulation
and is better understood.
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Figure 4.3: Simulations conducted for a crystal of 20 Be+ and 10 dark ions, with
the amount of amount of O+ and O+

2 trading off, to model probing the molecular
oxygen photo-dissociation. The experimental sequence included a probe at a high
frequency off-resonance value, a probe at the O+

2 secular frequency, a probe at the
O+ secular frequency, and a final probe at the high off-resonance value (with cooling
between each). Because their is good agreement between the initial and final probes,
we assume little hysteresis impacting our results. Note how O+ offers much better
number-resolution than O+

2 , presumably due to its mass being more similar to Be+.
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the distance of each dark-visible ion pair. We have also imagined the ions’ positions

to be stored in a list accessed by index where the coolant ions come first, hence the

summation indices (this reflects how QLICS handles the ion kinematic data). As we

will see, Eq. 4.1 captures some, but not all, of the trans-species coupling of a given

crystal in a single value. While many parameters (RF voltage, RF frequency, κ, axial

endcap voltage etc.) contribute to the geometry of the crystal, their effects can all

be contained in the ratio of ωx,y/ωz: the ratio of the strength of the (time-averaged)

radial confinement to the axial confinement. Since the RF frequency is essentially

fixed, κ is clearly fixed (and not easily controlled, for both see [10]), and we don’t

typically tune the RF amplitude, the easiest way of controlling the crystal geometry

is by changing the endcap voltage, thereby controlling the entire crystal geometry

with a single variable. As seen in Fig. 4.4, there is a happy medium between the

relaxed, linear crystal, and the squeezed, 3D, crystal where the inter-species Coulomb

interaction parameter is maximized. This demonstrates the tradeoff between the two

sources of inter-species distance. In the first case, the lighter ions ‘run off’ in the

axial directions more quickly than the heavier ones, creating poor coupling between

the coolant ions at the ends of the chain and our centrally located dark ions. In the

latter case, the heavier species is squeezed out in a ring whose radius increases more

rapidly than the thickness of the central ‘cigar’ of coolant ions. This relationship

suggests that it may be the case that axial tickles are more effective in ‘skinny’

crystals, and radial tickles are more effective in ‘fat’ crystal, though more study is

needed to confirm this hypothesis.

4.1.2 Power Broadening

As discussed in back in Ch. 2, Sec. 2.2.3, the scattering rate of an ion as a function of

its velocity is a Lorentzian curve. Of course, this curve is a function of the saturation

parameter, s0 as defined in Ch. 2 and [22]. For large s0 (s0 >> 1), the width of the
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Figure 4.4: Inter-species Coulomb interaction parameter as a function of crystal ge-
ometry. As axial compression increases both species pass through two regimes: the
lighter species goes from a 1-D ‘chain’ to a 3-D ‘cigar’, while the heavier species goes
from a cylindrical shell to a ring.
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Figure 4.5: For the same velocity, measured in the lab / laser table frame, there will
be a greater change in the scattering rate if our s0 is not very large. Note that we
consider ‘low’ saturation to still be well above what is consider ‘saturation’.
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Figure 4.6: The principle discussed in Fig. 4.5 demonstrated in a full simulation.
Notice how between the high and low saturation runs, the dynamics don’t systemat-
ically change. Despite this, the fact we are not power broadening in the right hand
column allows for finer velocity probing and, by extension, a stronger ion number to
one-look detection signal correlation.

Lorentzian increases with s0, while its peak does not, a common phenomena known

as ‘power broadening’. As shown in Fig. 4.5, as the detection laser saturates, the

same change in velocity results in a smaller change in scattering rate, making our

experiments less sensitive to the disturbance of the beryllium ions. This sensitivity

difference can, of course, be seen in full simulations, where we run the experiment for

identical systems, changing only our detection laser saturation as seen in Fig. 4.6.

The fact that this shows up in our simulations is not surprising at all, since we are

really just changing the way QLICS processes the velocity data it generates.
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4.1.3 Coolant Species Mass

The results of [23] were naturally of interest to us, seeing as it is an example of a

system for which other researchers were able to achieve number-resolution while we

were struggling to achieve the same results (even in simulation, as seen in Fig. 4.2).

A glaring difference between their system and ours were the species used: H+
2 and

H+
3 sympathetically cooled within a Be+ crystal. Note that their coolant species is

much heavier than their dark ion species. This has a significant effect on the crystal

geometry in that it places the dark ions in the crystal center, Fig. 4.7. While it

doesn’t clearly improve the static mean inter-species coupling, the expected source of

benefit from the changed geometry, causing the motion of the excited ions colliding

with the dark ions more often in their oscillations, has been observed. Simulations

conducted in a set system2 over various masses of coolant ions were conducted, Fig.

4.8, demonstrating an improvement of about 3x in normalized one-look detection

signal size when using calcium as our coolant species over beryllium. In the future,

we expect to conduct similar experiments to study the expected benefits from using

Ca+ as a coolant species to better inform our decision to move in that direction.

4.2 Decoupling of pure Be crystal size and LCF-

MS signal

Since our main goal is to study the excitation of dark ions via our beryllium ions, get-

ting a handle on the dynamics of a pure beryllium crystal is a natural stepping stone.

If we assume that the detection laser hits all the ions in the crystal equally for the

2It is a subtlety in how we hold the trap parameter constant as we very coolant mass. If we
simply hold the trap RF voltage constant, as in the dotted series of Fig. 4.8, changing the ion mass
changes the whole crystal geometry, confounding our results. We therefore varied the RF voltage as
we varied the coolant mass so as to hold the trap q parameter constant for the lightest species. This
preserves the shape of the crystal ‘core’. Note that this means the secular frequency of the dark ions
is also changing, so we have to change the tickle frequency to match as well.
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Figure 4.7: Mean inter-species Coulomb interaction parameter as a function of coolant
species and endcap V . Crystal images taken for both beryllium and calcium coolant
ions. Notice that calcium does not appear to have an obviously better interaction
parameter then beryllium.
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Figure 4.8: For reasons discussed in Sec. 4.1.3, it is very possible we did not com-
pletely isolate the mass-dependence of the normalized one-look detection signal size
here. To confirm the more than 3x improvement in relative signal size in moving from
beryllium to calcium, we would have to find optimal operating conditions for both
and compare. Also note that the size of the one-look detection signal is not necessar-
ily the same as number-resolution. The inset plot in the top right corner shows all
datapoints, including the massive response when the coolant species is equal in mass
to the dark ion species.
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duration of the experiment (this simplification is what we simulate), we would expect

a purely radial modulation to excite all ions in a pure beryllium crystal uniformly.

Therefore, while the baseline scattering rate of the crystal will change as a function

of the crystal size, the LCF-MS signal size (dip magnitude over baseline value) will

be crystal size-independent. Obviously, this independence will be true regardless of

tickle amplitude (a value that is hard to measure precisely in our current circuit).

Since this experiment isolates the detection laser power from the crystal features /

uncertainty of our tickle amplitude so well (variables that are hard to control and

hard to measure, respectively), it is a useful way of checking the congruence of our

simulations and our real-world experiment.

4.2.1 Simulation Expectations

In our simulations of this system we used a 100mV tickle, with a trap RF of 66.4V

amplitude, endcap voltage of 2V, and typical geometric values. The scaling with

crystal size can be seen in Fig. 4.9. In Fig. 4.9 we calculate the ratio of one-look

detection signal magnitude to the baseline, and find that there is no relationship

between crystal size and this normalized signal size.

4.2.2 Experimental Results

We conducted this experiment in the real-world trap with a 400mV tickle (nominal,

the electronics cut this down by a few orders of magnitude), 58−60 V RF amplitude,

and 2V on the endcaps. While we can’t directly control the number of ions in the

crystal, we attempted to get multiple data points by reloading beryllium (using the

electron gun) multiple times, using our CCD imaging system to count the number of

ions visually. For large crystals, we found it sometimes difficult to count the number

of ions directly because of the 3-dimensional nature of the crystal. We combated

this by relaxing the endcap voltage so the crystal arranged itself linearly, counting
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Figure 4.9: The baselines in the top plot have been translated so the series can be
directly compared. For a spatially uniform tickle and detection beam profile, the total
scattering rate scales perfectly linearly, as expected.
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Figure 4.10: Real world data of the single species crystal size experiment, plotting
the ratio of photons detected when tickling on-resonance to photons detected when
tickling off-resonance. Due to loading difficulties we were only able to take measure-
ments on 4 clearly unique crystals. While it is hard to draw conclusions from such
few points, it does seem that their may be non-linear scaling effects, possibly due to
the non-uniformity of the resonant beam profile.

the ions in this relaxed state, and then recompressing the crystal back into its usual

formation. With this method, we were now limited by the width of our camera’s field

of view, as well as the beam waist size on the crystal (it was clear that the ions would

sometimes be out of the detection beam for these large crystals). This limited our

experiments to the range of about 10 ions. A plot of the change in LCF-MS signal

size can be found in Fig. 4.10, and should be compared to Fig. 4.9. While we were

only able to make these measurements on crystals of a few different sizes, it seems

like we do not see the same invariance in relative LCF-MS signal size. We suspect

that the partial illumination of the crystal may be a significant source of non-linearity

in the photon count growth. Further experiments could explore this hypothesis by

conducting a similar experiment at different levels of axial compression (changing the

length of the crystal size and the ions’ exposure to the resonant beam).
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4.3 Heat Preparation

While our machine learning-led explorations have not literally given us a clear set

of parameters for which our number-resolution in the beryllium / molecular oxygen

system would be optimized, it has helped us devise a technique to help improve the

inter-species coupling of the system. While, in retrospect, we didn’t strictly require

an artificial neural network to uncover this ‘heat prep’ technique, our path to its

discovery demonstrates one of the benefits of having this feature in QLICS. This is a

way in which exploration can be automated3 and has helped us to find creative ways

of exploiting the features of our system for our benefit.

4.3.1 ML Origins and Physical Intuition

While running ML optimizations of one-look LCF-MS signal size, we noticed an

interesting trend - a decrease in the number of coolant ions and a decrease in DC

endcap voltage aided our signal size (over some parameters). While there is some

reasoning behind a lower DC voltage helping with the Coulomb interaction parameter

(to a point, as shown in Fig. 4.4), upon closer study of these simulations we came to

realize that the crystals were actually not cooling completely (again, as implied by the

left-tail of Fig. 4.4). This suggests that we may achieve improvement in our number-

resolution by maintaing heat within our system. This makes some physical sense - by

melting our rigid crystal, we may, decrease some of the inter-species distances as the

ions are mixed together, though we are also fighting against the increased volume of

gas phase cloud, see Fig. 4.12.

3I should say one small step of the exploration process can be automated, and it still requires a
great amount of oversight as well as someone to interpret the results - we are far from the point of
replacing the job of the (simulated) ion trapper!
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Figure 4.11: Unedited output from an M-LOOP optimization of a cost function defin-
ing peak size. The learner was given control over the endcap voltage and number of
coolant ions. While it is often hard to provide definitive interpretations of these land-
scapes, we have just begun using them to guide manual explorations of promising
regions - a process which lead to discovering the heat prep sequence.

4.3.2 Heat Prep Sequence

In the heat preparation sequence the only additional step we are adding to the typical

experimental sequence is a tickle at the beryllium resonance to heat the crystal. We

have tried tickling at about 100mV for approximately 2ms. An important feature to

study is the trade-off of the added heat’s benefit to the one-look signal and the added

heat’s increase in the noise level. In the limit of no added heat (traditional detection

sequence), our number-resolution, while poor in terms of slope, exhibits no ‘low-end

cutoff’, as will be seen in the higher temperature preparations, Fig. 4.13.

As we move into a ‘moderate’ amount of heat preparation, we begin to see sig-

nificant improvement (almost 4x) in the slope defining our number-resolution over

the high dark ion number regime, Fig. 4.14. This comes at the cost of our number-

resolution at the low end in the number of dark ions as the increase in noise in the

one-look LCF-MS signal due to the added heat makes it harder to resolve small sig-

nals (the left plot of Fig. 4.14). While this may seem to be a significant draw back,

a realistic real-world detection sequence will likely use these two techniques (no heat

prep and heat prep) in congruence to more precisely identify the number of dark ions
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Figure 4.12: The first melting scheme we tried (depicted above) involved freezing the
crystal (1), relaxing the DC voltage (2), tickling on the Be+ resonance before stop-
ping and letting it thermalize (3), and recompressing to the original endcap voltage
(4). Note that this process does not necessarily improve our inter-species Coulomb
interaction parameter due to the high energy of the molten crystal (now cloud), but
it does destroy the crystal geometry.
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Figure 4.13: Number-resolution for a 500mV tickle of crystals (VDC = 2V) with 10
Be+ ions with no heat preparation, repeated 3 times for each configuration. Notice
how the number-resolution/deviation is at its best when the number of dark ions is
less than the number of coolant ions. This is because our crystals are imperfectly
cooled so the uncertainty in our one-look LCF-MS signals increases.
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Figure 4.14: A repeat of the experiment done in Fig. 4.13, this time with a ‘moderate’
(controlled by amplitude of the heat tickle) amount of heat added. Notice how instead
of one linear relationship there is a region with no predictive power and one with a
higher predictive slope than was achieved with no heat prep. While these simulations
were only conducted once for each crystal, it is expected that added heat will cause
a general increase in noise.

in the Coulomb crystal.

Finally, as we might expect, for a high temperature heat prep our one-look LCF-

MS signal is essentially obscured by noise, making any predictions unreliable despite

the reasonably strong slope, Fig. 4.15. Thus, the effect of adding heat on our number-

resolution can be summarized as a different position in the trade-off between LCF-MS

signal to dark-ion-number correlation and noise.
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Figure 4.15: For high amounts of heating, the entirety of our dark ion number range
falls in the regime dominated by noise. Because we have been keeping the number
of coolant ions constant throughout this section, we cannot explore the crystals with
more than 16 O+

2 , since, in those crystals, the dark ions can not be cooled enough to
remain in the trap.
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Chapter 5

Next Steps

The next steps of this project can be split into two main categories. The first is

a catalog of potential studies, relevant to our lab’s goals, that can be conducted

right now with QLICS. I provide these examples to demonstrate the many areas of

exploration the Hanneke Lab can now pursue, demonstrate the versatility of QLICS,

and as inspiration to future students. It is worth emphasizing that the results of

Ch. 4 are are really just the smallest ‘tip of the iceberg’ in terms of the ML-driven

crystal dynamics research now available to us. The second category includes work

that can be done to update and improve QLICS, as well as features that may improve

its usability or applicability.

5.1 Suggested Future Explorations

In no particular order, here are some possible ML optimization projects that I thought

would be interesting to pursue, may provide significant insight into our system, and

can be implemented with QLICS in its current state of development.
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5.1.1 Direct Number-Resolution Optimization of the Cur-

rent System

The reader may have noticed that in the discussions of Ch. 4, we often use LCF-MS

signal size as the metric of comparison when measuring different experimental systems

against each other. This fact was also true for the many inconclusive ML explorations

not depicted in this thesis. While this is a reasonable signal to try optimize in general,

the metric of experimental importance for us is the number-resolution. A study of

this sort will likely require the optimization of a quite high-dimensional parameter

space, which may mean its best to use the neural network learner.

To set the skeleton (the ‘experiment.ini’) of such an experiment, one would want to

come up with some relatively efficient baseline setting and probing scheme (efficient

because the domain of the search will be relatively large, due to the high dimen-

sionality if nothing else). While certainly different types of skeletons will satisfy, I

näıvely imagine the simplest to be an iteration through different numbers of dark

ions, conducting a typical, abbreviated detection scheme of tickling off resonance, on

the secular resonance for the dark ions, and off resonance again. The purpose of this

pulse sequence is to establish a baseline against which to measure the resonance sig-

nal, and the final baseline is to ensure the integreity / uncertainty of the experiment

(the excited species’ are able to be re-cooled). The change in these signal-to-baseline

values would then be compared to the true change in numbers of dark ions, with some

defined relationship between them likely the same type of a linear fit compared to

noise we discuss in Ch. 4. This will likely define the cost function that one wants to

optimize.

The optimizer will have to have control over many parameters, some of which

may be: the number of coolant ions, the trapping parameters (both ωx,y/ωz, but also

absolute values of both, as a higher- or lower-energy driven oscillator may have a

positive effect on the inter-species collisions), the saturation of the resonant detection
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laser, the amplitude and duration of the tickle, possible heat prepping and the dura-

tion / intensity of it, and the shape (Taylor expansion coefficients) of the modulating

electric field to name just a few.

Needless to say, an optimization of this scale is not a trivial task, and would require

a significant amount of work both in setting up and in the interpretation of the ML

results. However, this project would have great impact, for if a good parameter set was

found, we would be able to greatly inform the eventual O+
2 dissociation experiment.

5.1.2 Modulating Electric Field Shape Optimization

What might be described as a subset of the project suggested above, the optimization

of the electric field shape would be a relatively straight forward (relative to the full

system optimization) but very interesting study. The learner (again, likely a neu-

ral network) would have to be given some, or all of the coefficients of the electric

field’s Taylor series expansion which yields 21 total coefficient ‘knobs’ to control (a

3D second-order expansion yields 6 spatially dependent and 1 spatially independent

coefficient for each component the electric field). One could imagine optimizing either

the LCF-MS signal (simpler) or the number-resolution value (harder). In addition, it

is possible that a study of how the crystal shape and modulation amplitude interact

with the shape optimization could yield interesting results. While we have 4 general

tickling schemes discussed in Sec. 2.2.2, we obviously don’t actually have arbitrary

control over the Taylor coefficients of the tickling field, and so a next step of this line

of study would be to restrict the model to the use of electric fields that can be prac-

tically created with our current trap. An exciting property of this project would be

that it would be relatively easy to test its findings against the real-world experiment

with our current electronics.
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5.1.3 Cooling and Loading Rate Optimization

A subject of practical concern is the rate at which we can trap ions, a limit that

we ran into when conducting the study of Fig. 4.10. It may be that different trap

parameters make it easier to ‘capture’ different velocity classes of ions. It is also clear

that the configuration of our cooling laser will have a major effect on the loading

rate. An optimization of this sort would explore the effect of different saturation

parameters and different detuning amounts on this rate. Furthermore, it may be that

we get a geometric advantage by either changing the k vector of the cooling laser,

or splitting the detuned component into multiple beams (maybe counter-propagating

cooling lasers would be advantageous, or maybe increasing the projection in the high-

frequency radial direction would increase our trapping ability). One could also imag-

ine that dynamically stepping the detuning amount, or introducing near-detuned and

far-detuned components would allow us to capture a broader velocity class of ions.

Since there is a logistical cost in changing the optics on the real-world table, it may be

necessary to introduce some artificial ‘penalty’ to the cost function for the complex-

ity of the solution it finds. It may also be that the optimal parameters change as a

function of the ions already within the trap (we do see this, as sometimes ions are lost

while we are actively loading and sometimes it seems as though we hit limits where

we can’t effectively load any more ions). Finally, it is possible that the initial capture

of Be+ and the sympathetic cooling of O+
2 have different sets of optimal parameters.

A better grasp of these concepts may significantly improve the day-to-day life of the

ion trapper working with our system.
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5.1.4 ‘Best vs. Best’ Comparison of Be+ and Ca+’s Effective-

ness in the LCF-MS Scheme

The study shown in Fig. 4.8 is fundamentally flawed in that neither holding the trap

RF voltage or the ‘q parameter of the lightest ion’ constant fairly compares crystals

of different coolant species. While we discuss the issues with holding the trap RF

voltage constant in the footnote of Sec. 4.1.3, the approach of holding q constant

(by varying RF voltage amplitude) changes the secular frequencies of the dark ions.

This means that for a fixed tickle duration, we are driving over a different number

of oscillations. A more fair comparison would be to compare the optimized LCF-MS

or number-resolution signal that is practically achievable in both Be+ and Ca+, the

essence of the ‘Best’ vs. ‘Best’ comparison. While this is similar in principle to the

project of Sec. 5.1.1, it would probably be acceptable to consider the optimization

over a smaller, more realistically achievable parameter space, since this optimization

project is highly sensitive to practical considerations (after all, we expect Ca+ to

provide a geneal benefit over Be+, the question is rather if the expected benefit is

worth the difficulty in introducing a new coolant species into the system).

5.1.5 Reverse ‘Optimization’ to Establish Congruence with

Real-World Experiment

My final suggestion is a ‘congruence test’ to check the possibility of establishing

agreement between simulation results and, not analytic results, but experimental ob-

servations. The essence of online optimization is that the generation of the data is

controlled by the optimizer, not preexisting. However, we could imagine taking a

broad frequency sweep (akin to that reported in our paper demonstrating the de-

tection of dark ions, [11]), defining the same experiment (structurally, some of the

scaling coefficients such as tickle amplitude are not exactly known) in QLICS, and

85



running an optimization to try and recover the same spectrum. The cost function

would therefore be defined as the difference between the simulated and experimental

spectra. The purpose of such a study would be to understand the relationship be-

tween our experimental and simulated system, highlighting the accuracy with which

our simulation models the actual experiment.

5.2 Future Features and Improvements

Clearly, there are many exciting and important projects that can be done with QLICS

in its current state. However, there are also many areas in which the program can be

improved, including both possible new features and changes to the way the program

is structured. An immediate example of such a task is the transition to a more

standard, object-oriented organization of the QLICS source code.1 Although I expect

many more to appear as we continue to extend the uses of the program, I will highlight

some possible areas of improvement that I have come across during this work.

5.2.1 Machine Learning Improvements

As a function of our treatment of M-LOOP as an optimizing black box, the integration

of the simulation and ML optimization sides of QLICS is likely imperfect. It may be

that direct control over the details of the ML mechanisms will help us to achieve faster

and more reliable convergence on optimal parameter sets. In doing so, we could revise

the workflow for improving our intuition of the interplay of different paramaters on a

given cost function by further investigating the means of visualizing the intermediary

steps in an online optimization. While M-LOOP neural network learners are able

to produce cost landscapes for 2-dimensional optimizations (such as Fig. 4.11), it

would be of great benefit to be able to use the entire course of a high-dimensionality

1Many thanks to Paul Grajzl for significant work on this topic.
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online optimization run to help improve our own intuition of the system. It has

been suggested2 that full ‘maps’ of high-dimensional cost landscapes can be used

to minimize the need to repeat redundant optimizations in similar systems. While

certainly an ambitious goal over large domains, the creation of a catalog of such ‘maps’

would demonstrate great progress in our understanding of this complex system. In

short, it is an open question of how we can improve our use of machine learning to

optimize our experiments, now that QLICS has provided us with a mechanism of

easily returning a cost for a set of input paramaters.

5.2.2 More Realistic Laser Models

Our laser-cooling model is primitive for two main reasons. First, we use a linear

approximation of a Lorentzian process. It is unclear how dramatically this causes our

simulation dynamics to deviate from the true dynamics, but if it is a major issue, we

could re-parameterize the cooling force using a more precise model. More importantly,

we currently treat both our cooling and detection lasers as infinite in beam waist

radius and spatially uniform in intensity. This is actually a poor approximation, as we

often see ions in large crystals to fluoresce to different degrees based on their position.

This could possibly be a major source of issues we see in our real-world experiments. A

fix to this would be to re-parameterize both as having a true Gaussian profile, defined

in an experiments’ configuration file along with the other laser parameters. Finally,

we treat the resonant beam as completely passive, and do not simulate the recoil the

ions feel due to absorption or re-emission of light due to this beam. Changing this

will make our simulations more true to life, and may have implications, specifically,

for the optimal execution of the heat preparation sequence.

2By Paul Grajzl, in an informal discussion on November 11, 2024
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5.2.3 More Realistic Trap Model

Because our endcap electrodes are not radially symmetric, we sometimes observe

splitting between the actual secular frequencies, ωx and ωy, in our real trap [20].

This is a characteristic that can be molded with (py)LIons linearpualtrap method

using the ‘anistropy’ parameter [19]. However, this functionality was not carried over

into QLICS. Furthermore, we have observed anharmonic behavior in our trap [10].

There is currently no way to include such a detail in a QLICS simulations. Repairing

these two simplifications may aid in the congruence between our simulations and real

experiments.

5.2.4 Improved Performance

The two most obvious areas that we can improve QLICS runtime performance are in

the scattering rate integration during the detection routine and in the ability to run

experiments in parallel during the ML optimizations.

We have often seen that the detection step of a single experiment often has a

runtime on the order of the LAMMPS simulation runtime itself. While it would

require more study to confirm, this may be due to the use of the full relativistic

doppler shift, fo = fl

√
1+v/c
1−v/c

in our scattering rate equation, Eq. 2.19, with the

repeated square root operation causing the slow execution. Improvement to this

algorithm (perhaps by using the low-velocity doppler shift approximation, certainly

valid for typical ion speeds on the order of 100m/s or less), would be greatly beneficial.

While it is unclear how the details of this execution would work, finding a way

to allow the ML optimizer to run simulations in parallel on the HPC system would

greatly improve the time it takes to fit neural networks and GP models. We have

already seen an order of magnitude improvement in execution times for general sets

of simulations, and so would expect similar acceleration in this context. The primary

issue with this is that, in general for the online optimization scheme, the model uses
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the cost function calculation at the previous step to inform its next test point in

parameter space, a process that doesn’t naturally fit with parallel execution [16, 29].

The reason for this restriction in M-LOOP is that it was made with the optimization

of real-world experiments, not simulated experiments, in mind [16]. Once a solution

to this issue is found, the integration of system-conscious parallel execution can be

easily incorporated into the ‘Run Experiment Batch From Directory’ mode.

5.2.5 Full Simulation Access for ML Optimizer

Finally, the artificial restriction3 of the ML optimizer having only access to the simu-

lation output via the scattering data (not giving it access to position or velocity data)

may have been too limiting to the scope of QLICS’ application. While the original

thought was that this was necessary to keep the program more true to the real world

experiment (which we only access via scattered photon counts), it limits the detailed

crystal-structure-type experiments we may want to study. For instance, we can not

run an optimization with the cost function related to the mean inter-species Coulomb

coupling parameter introduced in Eq. 4.1. Furthermore, users with trapped ion ap-

plications that do not depend on the fluorescence of the ions in their experiments will

be unnecessarily restricted by this requirement. Therefore, removing the restriction

should help the program’s general applicability.

5.3 Final Thoughts

In this work, we have introduced a software package for the general-purpose simulation

of ions trapped in linear Paul traps and provided examples of its use. Although QLICS

heavily relies on several other programs (namely (py)LIon, LAMMPS, and M-LOOP

[16, 19, 26]), it brings new functionality in its experiment-focused approach and the

3In the sense there is no program-logic based need for this restriction.
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integration of dynamics simulation with online ML-driven optimization. Because the

trapped-ion platform is used in such a wide variety of contexts, it is our hope that the

program and the discoveries it may facilitate will find application beyond our use-case.

Nevertheless, our use-case is far from exhausted. While we have begun the journey

of better understanding the interaction between the many parameters defining our

Coulomb crystal experiments, the development of QLICS is only the launch point

for the many interesting and important studies of Coulomb crystal dynamics yet to

come.
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Appendix A

Videos of Sympathetic Excitation

A.1 Tickling GIFs

The two supplementary GIFs, ‘offres.gif’ and ‘onres.gif’ show simulations of the ex-

citation of a mixed species crystal with a modulating electric field both on-resonance

with the O+
2 secular frequency and off-resonance. Note that when tickled on-resonance,

the Be+ ions are dramatically disturbed, but when tickled off-resonance the Be+ core

is not. The tickle amplitude was increased in both videos to emphasis the effect. Note

that the initial cooling period is not done with a simulated laser cooling force, but

rather with a genaric, 3D, linear damping force, F = −|b|v for video brevity. This is

a (0K) (py)LIon-defined Langevin bath [19].

The GIFs can be accessed on Prof. Hanneke’s website, https://dhanneke.

people.amherst.edu/, or in the Amherst College Library Archives. Amherst College

Physics and Astronomy Dept. faculty readers will also find the GIFs in the attached

supplemental files.
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Appendix B

QLICS Examples

Here I will provide a couple of the main example experiments QLICS will ship with.

Then I will provide one completely annotated configuration file of an experiment of the

form depicted by Fig. 3.4. Next, I will break down the structure of the fluorescence

output CSV file. Finally, I will break down the syntax of the M-LOOP configuration

file with an example of such input.

B.1 Examples

The examples introduced below follow a progression that builds up to a full LCF-MS

experiment. We start with the sympathetic cooling of a ‘dark ion’ species. Then we

show an experiment demonstrating the excitation of the Be+ ions’ secular frequency.

Finally, we present a full LCF-MS experiment for the detection of dark ions in a

mixed crystal. I have included the full configuration files for completeness, but only

completely annotated the final configuration file. Throughout this thesis, we have

‘cleaned’ up the figures that were output by the QLICS program itself. Here, I do

not do this, to show the raw output images using the QLICS ‘Analyize Completed

Experiment Mode’.
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B.1.1 Sympathetic Cooling of Co-trapped Ions

This simulation merely creates a cloud of 20 Be+ ions and 5 O+
2 ions in a pseudo-

potential trap. It then Doppler cools the Be+, which, in turn, cool the O+
2 sympathet-

ically. The configuration code is below, but first note that although we used newlines

to make the code readable (denoted by the ↪→ symbol), the actual program INI file

should keep keys and values on one line.

[directory]

dump_dir = /Users/michaelmitchell/qlicS/data /2024 -11 -24_16 -24 -53/

[live_vars]

current_timesequence_pos = 1

[constants]

h = 6.626e-34

c = 299792458

amu = 1.6605402e-27

ele_charge = 1.60217663e-19

boltzmann = 1.380649e-23

[ions]

be+ = [{'mass': 9,'charge': 1}, {'natural linewidth':

↪→ 113097335.52923255,'absorption center': 957800000000000.0,'

↪→ saturation': 765}]

o2+ = [{'mass': 32, 'charge': 1}, {'natural linewidth': None,

↪→ 'absorption center': None,'saturation': None}]

[sim_parameters]

log_steps = 10

timesequence = [[1e -08, 5e5]]

lammps_boundary_style = ['f', 'f', 'f']

lammps_boundary_locations = [[ -.001, .001],[ -.001, .001],[ -.001,
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↪→ .001]]

lammps_allow_lost = False

gpu = False

[ion_cloud_0]

uid = 1

species = be+

radius = 1e-4

count = 20

[ion_cloud_1]

uid = 2

species = o2+

radius = 1e-4

count = 5

[trap_0]

uid = 100000001

target_ion_pos = 0

radius = 1.25e-3

length = 1.5e-3

kappa = 0.17

frequency = 11.04e6

voltage = 66.4

endcapvoltage = 1.5

pseudo = True

[trap_1]

uid = 200000001

target_ion_pos = 1

radius = 1.25e-3

length = 1.5e-3

kappa = 0.17
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frequency = 11.04e6

voltage = 66.4

endcapvoltage = 1.5

pseudo = True

[cooling_laser_0]

uid = 569202603907002

target_ion_pos = 0

target_ion_type = be+

beam_radius = 0.0001

saturation_paramater = 100

detunning = -300000000.0

laser_direction = [0.5, 0.5, 0.7071067811865475]

laser_origin_position = [0, 0, 0]

[exp_seq]

com_list = dumping,cloud,cloud,trap,trap,cooling_laser,evolve

Fig. B.1 is an unedited 3D image, generated in QLICS of the crystal at the end of

the cooling simulation. Fig. B.2 shows the RMS-velocity of the entire crystal over

the course of the simulation.

B.1.2 Pure Be+ Crystal ‘Chirp’ Detection Sequence

The following experiment conducts a ‘chirp’ detection sequence - a LCF-MS experi-

ment where the modulating frequency is not swept linearly, but rather with increased

resolution near the expected resonance. This allows us to cover a broad frequency

range quickly, while also seeing the details of our resonance. This experiment show-

cases the use of the ‘iter object’, the simulated detected photon count calculation,

and the approximation of our true modulating electric field (here we use the coeffi-

cients for an electric field created by the middle segment of an electrode). Here is the
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Figure B.1: An unedited image of the crystal, taken at the final timestep of the
simulation, made using the ‘Analyze Completed Experiment’ mode. Note that QLICS
does not make the aspect ratio of such images square by default, so the crystal appears
‘shorter’ then it actually is.
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Figure B.2: Unedited QLICS image, made using the ‘Whole’ options of the ‘Analyze
Completed Experiment’ mode. Note that RMS-velocity is calculated over all ions in
the simulation, regardless of species.
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configuration code:

[directory]

dump_dir = /Users/michaelmitchell/qlicS/data /2024 -11 -24_16 -49 -16/

[live_vars]

current_timesequence_pos = 34

[constants]

h = 6.626e-34

c = 299792458

amu = 1.6605402e-27

ele_charge = 1.60217663e-19

boltzmann = 1.380649e-23

[ions]

be+ = [{'mass': 9,'charge': 1}, {'natural linewidth':

↪→ 113097335.52923255,'absorption center': 957800000000000.0,'

↪→ saturation': 765}]

o2+ = [{'mass': 32,'charge': 1}, {'natural linewidth': None,'

↪→ absorption center': None,'saturation': None}]

[sim_parameters]

log_steps = 10

timesequence = [[1e -07, 50000.0 ]]

lammps_boundary_style = ['f', 'f', 'f']

lammps_boundary_locations = [[ -.001, .001],[ -.001, .001],[ -.001,

↪→ .001]]

lammps_allow_lost = True

gpu = False

[detection]

detection_timestep_seq = [[]]

detector_area = 0.0001
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detector_effeciency = 0.01

detector_distance = 0.2

[modulation_0]

uid = 469202603907006

amp = 1e-3

frequency = 850000

ex0 = -0.000454696 e3

exx1 = 0.276281 e6

exx2 = -0.000161148 e9

exy1 = -0.000262039 e6

exy2 = -0.000152101 e9

exz1 = -3.26987e-1

exz2 = 0.0000886927 e9

ey0 = -0.301462e3

eyx1 = -0.000257338 e6

eyx2 = 0.153281 e9

eyy1 = -0.347874e6

eyy2 = -0.198196e9

eyz1 = -0.000142671 e6

eyz2 = 0.0347355 e9

ez0 = -0.00014145 e3

ezx1 = -3.27456e-1

ezx2 = 0.0000990478 e9

ezy1 = -0.000164334 e6

ezy2 = -0.0000207108 e9

ezz1 = 0.0716623 e6

ezz2 = -0.000120806 e9

x_shift = 0

y_shift = 0

z_shift = 0

static = [0, 0, 0]
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[ion_cloud_0]

uid = 1

species = be+

radius = 0.001

count = 10

[trap_0]

uid = 1000001

target_ion_pos = 0

radius = 1.25e-3

length = 1.5e-3

kappa = 0.17

frequency = 11040000

voltage = 66.4

endcapvoltage = 2

pseudo = True

[cooling_laser_0]

uid = 569202603907002

target_ion_pos = 0

target_ion_type = be+

beam_radius = 0.0001

saturation_paramater = 100

detunning = -300000000.0

laser_direction = [0.5, 0.5, 0.7071067811865475]

laser_origin_position = [0, 0, 0]

[cooling_laser_1]

uid = 369202603907003

target_ion_pos = 0

target_ion_type = be+

beam_radius = 0.0001

saturation_paramater = 100
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detunning = -300000000.0

laser_direction = [0.5, 0.5, 0.7071067811865475]

laser_origin_position = [0, 0, 0]

[scattering_laser]

scattered_ion_indices = [0, 10]

target_species = be+

laser_direction = [-0.5, -0.5, -0.7071067811865475]

saturation_paramater = 100

frequency = 957800000000000.0

[iter]

scan_objects = ["modulation_0","scattering_laser","cooling_laser_1"]

scan_var = ["modulation_0", "frequency"]

scan_var_seq = [500000, 600000, 700000, 705000, 710000, 714000,

↪→ 716000, 718000, 720000, 750000, 850000]

iter_timesequence = [[1e -08, 1e4],[1e -07, 1e3],[1e -07, 10000 ]]

iter_detection_seq = [[1e4, 1.1 e4]]

com_list =

↪→ tickle,evolve,r_469202603907006,evolve,cooling_laser,evolve

[exp_seq]

com_list =

↪→ dumping,cloud,trap,cooling_laser,evolve,r_569202603907002,iter

The QLICS, ‘Analyze Completed Experiment’ function can be used to plot the ac-

quired frequency spectrum, as seen in Fig. B.3. In addition, by looking at the

RMS-velocity output, we can corroborate this spectrum: Fig. B.4.

101



Figure B.3: Again, this figure is the unedited output from the QLICS ‘Analyze Com-
pleted Experiment’ mode. The ‘chirp’ nature of the iteration is clear by the X-
positions of the data-points. Here, the scan var is, of course, the modulating electric
field frequency.
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Figure B.4: While this is an unedited image made by QLICS, the initial data-points
were removed, so that high RMS velocity in the initial cooling period didn’t washout
the signal at the various modulation pulses. Notice how the photon count dips gen-
erally agree with the RMS-velocity at each detection point. However there are some
exceptions, such as the third data-point, which, despite a high peak RMS-velocity,
does not translate into a significant change in fluorescence.

103



B.1.3 LCF-MS Example

Finally we will look at the LCF-MS example. While the results of this experiment

don’t perfectly isolate the signal, the structure of the INI file will help provide a

skeleton for how these types of experiments may be conducted. Furthermore, the

issues with the generated spectrum highlight the difficulty in achieving reproducible

LCF-MS in our current system.

Annotated Experiment Configuration INI File Syntax

Here we provide a configuration INI file that was used in the LCF-MS example above

with annotations indicated by a ‘#’ symbol.

# The directory section is not user -edited (user input in this

↪→ section will be overwritten automatically). Much like the the

↪→ live_vars section, it is used only for internal reference.

[directory]

dump_dir = /Users/michaelmitchell/qlicS/data /2024 -11 -24_12 -11 -36/

# The live_vars section is also not user -edited. This manages

↪→ timestep sequence position across QLICS, so that calculations

↪→ dependent on timestep size are in agreement.

[live_vars]

current_timesequence_pos = 33

# Declaration of universal constants, all fields are mandatory.

↪→ QLICS generally expects values in the INI file to be in SI

↪→ units.

[constants]

h = 6.626e-34

c = 299792458

amu = 1.6605402e-27

ele_charge = 1.60217663e-19
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boltzmann = 1.380649e-23

# Definition of ion 'types'. The first item of the list defines the

↪→ ion's mass and charge as required by (py)LIon. The second

↪→ paramaterizes the transition used for both cooling and

↪→ resonant detection. There is not currently any way to

↪→ simulate a species with multiple relevant transitions. Note

↪→ that for species that are not addressed optically, None

↪→ objects can be passed without error.

[ions]

be+ = [{'mass': 9, 'charge': 1},{'natural linewidth':

↪→ 113097335.52923255, 'absorption center': 957800000000000.0,

↪→ 'saturation': 765}]

o2+ = [{'mass': 32, 'charge': 1},{'natural linewidth': None,

↪→ 'absorption center': None,'saturation': None}]

# Parameters that set the LAMMPS environment.

# - log_steps: how many timesteps between LAMMPS thermo output

↪→ dumping events. Used to reduce the size of positions.txt

↪→ files. Note that log_steps is independent of timestep size,

↪→ so it doesn't change the dynamics, only how often we sample

↪→ dynamics.

# - timesequence: a list of lists defining each evolution command.

↪→ Each sublist is of the form [timestep_size,

↪→ number_of_timesteps], allowing the timestep size to be

↪→ dynamically adjusted. In this example, all evolution is done

↪→ in the iter object, so timesequence is left empty.

# - lammps_boundary_style: the arguments of the LAMMPS boundary

↪→ command. See LAMMPS documentation, docs.lammps.org/boundary.

↪→ html, for more information.

# - lammps_boundary_locations: set the size of the simulation

↪→ boundary in SI units and Cartesian coordinates.

# - lammps_allow_lost: boolean allowing LAMMPS to complete

↪→ simulation if lost (the definition of lost is controlled by
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↪→ boundary style and boundary location)

# - gpu: (py)LIon gpu acceleration feature (see (py)LIon

↪→ documentation)

[sim_parameters]

log_steps = 10

timesequence = []

lammps_boundary_style = ['f', 'f', 'f']

lammps_boundary_locations = [[ -.001, .001],[ -.001, .001],[ -.001,

↪→ .001]]

lammps_allow_lost = False

gpu = False

# This section should be thought of as only the 'detector' and is

↪→ not related to the 'scattering_laser'.

# - detection_timestep_seq: A list of lists, with each sublist in

↪→ the form [timestep_start, timestep_stop], defining what parts

↪→ of the simulation the detector is counting photons at. The

↪→ value is left blank here since we only want to detect at times

↪→ within the iter sequence in this example.

The remaining variables define a constant by which to reduce the

↪→ photon count by:

detector_effeciency(detector_area /(4*pi*detector_distance **2))

[detection]

detection_timestep_seq = [[]]

detector_area = 0.0001

detector_effeciency = 0.01

detector_distance = 0.2

# The `tickle' electric field. Of the form: E = A * R * Cos(wt),

↪→ where R(x,y,z) is the position dependence vector.

# - uid: explicit control of the (py)LIon per -object

↪→ identification variable. This value can not be repeated with

↪→ any other object and allows for explicit removal if desired.
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# - amp: The amplitude multiplier, A in the equation above.

↪→ Generally, its value is set a bit arbitrarily.

# - frequency: The frequency of oscillation, in Hz. Note that in

↪→ this example, the value is overwritten in the iter object, so

↪→ the value in the initial declaration here does not matter.

# - position expansion coefficients: coefficients of the second -

↪→ order Taylor series expansion in 3 dimensions for some field.

↪→ Note that here, we are using a uniform field for simplicity.

↪→ Notationally, the first letter refers to the component of the

↪→ E-field, the second letter refers to the dimension the

↪→ componant varies with respect to, and the final number

↪→ indicates the order of the term.

# - shift variables: These translate the electric field

↪→ definition.

# - static: this vector defines a time -independent, and spatially -

↪→ independent component, if desired.

[modulation_0]

uid = 469202603907006

amp = 1e-3

frequency = 195683.7

ex0 = -0.000454696 e3

exx1 = 0.276281 e6

exx2 = -0.000161148 e9

exy1 = -0.000262039 e6

exy2 = -0.000152101 e9

exz1 = -3.26987e-1

exz2 = 0.0000886927 e9

ey0 = -0.301462e3

eyx1 = -0.000257338 e6

eyx2 = 0.153281 e9

eyy1 = -0.347874e6

eyy2 = -0.198196e9

eyz1 = -0.000142671 e6
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eyz2 = 0.0347355 e9

ez0 = -0.00014145 e3

ezx1 = -3.27456e-1

ezx2 = 0.0000990478 e9

ezy1 = -0.000164334 e6

ezy2 = -0.0000207108 e9

ezz1 = 0.0716623 e6

ezz2 = -0.000120806 e9

x_shift = 0

y_shift = 0

z_shift = 0

static = [0, 0, 0]

# This object directly accesses the (py)LIon ion cloud function,

↪→ creating a spherical cloud of ions. Again, we incorporate

↪→ mandatory, explicit UID control so the cloud may be removed

↪→ in the command list.

[ion_cloud_0]

uid = 1

species = be+

radius = 1e-4

count = 20

# A second ion cloud, this time for o2+. Notice how the UID must be

↪→ different. Each object declaration requires a different '

↪→ index', the value after the type declaration. These must

↪→ incrementally increase from 0, and define the order with which

↪→ the objects are appended to the simulation.

[ion_cloud_1]

uid = 2

species = o2+

radius = 1e-4

count = 5
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# The first object of type 'trap'. The UID is an arbitrary integer.

↪→ Because we expect the traps to generally be pseudopotential

↪→ approximations, a 'target ion' must be defined. Note that ion

↪→ target is identified not by type, but by appending group.

↪→ The remaining arguments are the same as defined in the (py)

↪→ LIon docs.

[trap_0]

uid = 11012277363

target_ion_pos = 0

radius = 1.25e-3

length = 1.5e-3

kappa = 0.17

frequency = 11040000

voltage = 66.4

endcapvoltage = 1.5

pseudo = True

# Once again, we have to increment the object number. While the

↪→ value of the UID looks very specific, it really is just an

↪→ arbitrary unique number. Note that we make the same trap

↪→ twice, with different targets to co -trap different species.

↪→ The reason for this is explained in Ch. 3.

[trap_1]

uid = 12012277363

target_ion_pos = 1

radius = 1.25e-3

length = 1.5e-3

kappa = 0.17

frequency = 11040000

voltage = 66.4

endcapvoltage = 1.5

pseudo = True
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# The cooling laser object. While target_ion_pos and

↪→ target_ion_type may look redundant, this makes it not

↪→ mandatory to apply a cooling force to all ions of the same

↪→ species. beam_radius and laser_origin_position, are relics of

↪→ an early attempt to incorporate a finite -sized laser beam,

↪→ and currently have no effect on the simulation. The remaining

↪→ variables are self -explanatory, and correspond to the

↪→ discussion in Ch. 2.

[cooling_laser_0]

uid = 569202603907002

target_ion_pos = 0

target_ion_type = be+

beam_radius = 0.0001

saturation_paramater = 100

detunning = -300000000.0

laser_direction = [0.5, 0.5, 0.7071067811865475]

laser_origin_position = [0, 0, 0]

# This object defines the resonant beam.

# - scattered_ion_indices: The list of ions (in their order of

↪→ creation) over which the ion scattering rate calculation is

↪→ conducted. This explicit control is often redundant, and

↪→ likely will be updated at some point to just consider for

↪→ calculation by species.

# The remaining variables are as defined in Ch. 2.

[scattering_laser]

scattered_ion_indices = [0, 20]

target_species = be+

laser_direction = [-0.5, -0.5, -0.7071067811865475]

saturation_paramater = 5

frequency = 957800000000000.0

110



# The iteration object basically acts as a 'for loop'.

# - scan_objects: The subset of the main object declaration pool

↪→ to be used in the iter object's sub -command list

# - scan_var: The object variable to be scanned from the iter

↪→ object pool, for which the loop varies.

# - scan_var_seq: A list of values that the scan_var is set to in

↪→ the loop. The length of this loop defines the number of loops

↪→ in the iteration.

# - iter_timesequence: Analogous to the primary timesequence, this

↪→ list of lists defines the evolution commands in the iter

↪→ command list

# - iter_detection_seq: Analogous to the primary detection

↪→ sequence. It should be noted that these timestep values are

↪→ relative to the iteration loop. So here, we conduct detection

↪→ from 2.9e5 -3e5 timesteps measured from the start of each loop

↪→ in the iteration.

# - com_list: The sub -command list for the iteration object. This

↪→ is the experimental sequence that is conducted for each

↪→ iteration of the iter object. Note that while the explicit

↪→ removal commands (r_UID) are defined for particular UIDs, the

↪→ UIDs of objects introduced into the iteration command list are

↪→ actually incremented over the loops. Because of this it is

↪→ important to space the initial UID values of objects that will

↪→ be used inside iterations out, to avoid UID conflicts.

[iter]

scan_objects = ["cooling_laser_0","modulation_0"]

scan_var = ["modulation_0", "frequency"]

scan_var_seq = [175683 .7, 177683.7, 179683.7, 181683.7, 183683.7,

↪→ 185683.7, 187683.7, 189683.7, 191683.7, 193683.7, 195683.7]

iter_timesequence = [[1e -08, 1e5],[1e -08, 1e5],[1e -08, 1e5]

]

iter_detection_seq = [[2.9e5, 3.0 e5]]

com_list = cooling_laser,evolve,r_569202603907002,tickle,
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evolve,r_469202603907006,evolve

# The primary command list. Note how objects are appended, not by

↪→ explicit reference, but by type. This is why the number

↪→ ordering is so important in the initial object declaration. A

↪→ full list of allowed commands will be available in the QLICS

↪→ documentation.

[exp_seq]

com_list = dumping,cloud,cloud,trap,trap,iter

B.2 Photon Count Over Experiment Iterations

Here, I provide the output of the LCF-MS experiment defined above. Note that this

spectrum does not produce the exact frequency data that we would expect, and the

results did seem to be moderately unstable over multiple runs of the simulation. The

data is reported in Tbl. B.1, and plotted in Fig. B.5.

det start det stop modulation 0 - frequency photon count
290000.0 300000.0 175683.7 9362.7827
590000.0 600000.0 177683.7 9332.1938
890000.0 900000.0 179683.7 9348.9394
1190000.0 1200000.0 181683.7 9330.6339
1490000.0 1500000.0 183683.7 9327.7157
1790000.0 1800000.0 185683.7 9280.5361
2090000.0 2100000.0 187683.7 9303.5036
2390000.0 2400000.0 189683.7 9249.6448
2690000.0 2700000.0 191683.7 9314.6967
2990000.0 3000000.0 193683.7 9305.1626
3290000.0 3300000.0 195683.7 9313.2308

Table B.1: Raw CSV output from QLICS (obviously, transferred into a LATEX table,
but otherwise unedited) for the LCF-MS experiment described in Sec. B.1.3. QLICS
provides the value of the ‘scan var’ in the loop as well as the absolute time-steps over
which the detection was conducted.
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Figure B.5: Unedited QLICS output, plotting the results reported in Tbl. B.1. Again,
scan var here is the modulation frequency. The radial secular frequency for oxygen
trapped in the trap defined by this experiment is about 185 kHz, yet this is not the
minimum point in our data. The lack of reproducibility in this experiment may sug-
gest some issues with the experiment integrity. One may try to tweak the parameters
of the experiment in the annotated INI file above to try and improve these results.
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B.3 Optimization Configuration File Example

Finally, I will provide an example of the M-LOOP-controlling input Python file. For

brevity, I will not include the necessary experiment skeleton INI file, but the full

example will be available in the QLICS documentation. While I won’t go over every

line of the example file I will highlight a few points below.

The file defines two functions that QLICS expects to locate, ‘get run info’ and

‘return controller’. The latter is extremely basic, and just returns the M-LOOP

‘create controller’ output. This is where we delcare the type of learner we will be

using, the parameter space we will be searching (dimensions and range), and the

termination conditions of the optimization. The former actually controls the process

of running the simulation. In this example, we are trying to optimize the LCF-MS

signal in a mixed-species crystal by changing the number of beryllium and molecular

oxygen ions, as well as by changing the endcap voltage. Since changing the endcap

voltage changes the radial secular frequency (Eq. 2.9), we need to recalculate the

expected secular frequency based on the neural network learner’s endcap potential

value. This parameter (really the full list of frequencies to modulate at) is inserted

into the iter object’s scan var seq as an override of what was originally submitted in

the experiment INI file. Similarly, we override the relevant values of the ion numbers

of both species to apply the parameter set the neural network wants us to.

Once we receive the photon count results from the simulation, we pass this list

through a simple algorithm defining the quality of our LCF-MS signal (here we are

looking at optimizing peak size). This is our cost function. The cost function used

here was rather hastily defined, and a more advanced cost function may improve our

optimization results significantly. In addition, we may define an uncertainty value

based on these results. A very primitive uncertainty algorithm (just the standard

deviation of the so-called baseline, the photon count at off-resonance modulation) was

used here. While this optimization was done for one QLICS experiment per parameter
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step, we could easily conduct multiple experiments for each given parameter set. This

would come in handy if, for example, we wanted to define our cost function on number

resolution instead of LCF-MS signal size. Here is the code:

from qlicS.cl_console import run_from_file

import mloop.controllers as mlc

import numpy as np

def get_run_info(experiment_dir, params) -> dict:

def f_r(mass, ev, charge=1.60217663e-19, kappa=0.17,

length=1.5e-3, freq=11.04e6, voltage=66.4,

radius=1.25e-3):

↪→

↪→

ar = -4 * charge * kappa * ev / (mass * length**2 * (2 *

np.pi * freq) ** 2)↪→

qr = 2 * charge * voltage / (mass * radius**2 * (2 * np.pi *

freq) ** 2)↪→

wr = 2 * np.pi * freq / 2 *np.sqrt(ar + qr**2 / 2)

f_xy = wr/2/np.pi

return f_xy

amu = 1.6605402e-27

o2_res = f_r(32*amu, params[2])

scan_seq = [78000, 100000, 125000, o2_res, 225000, 250000,

278000]↪→

try:
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scat = run_from_file(optimize_mode=True, exp=experiment_dir,

cloud_0_count=int(round(params[0])),

cloud_1_count=int(round(params[1])),

iter_scan_var_seq=scan_seq,

trap_0_endcapvoltage=params[2],

trap_1_endcapvoltage=params[2],

scattering_laser_scattered_ion_indices=[0,

int(round(params[0]))])

↪→

↪→

↪→

↪→

↪→

↪→

↪→

non_res_list = []

res_count = scat[4][3]

for s in scat:

if s[3] != res_count:

non_res_list.append(s[3])

# Optimizing Peaks

res_diffs = [(res_count-i) for i in non_res_list]

avg_diff = sum(res_diffs)/len(res_diffs)

cost = -(avg_diff)

bad = False

uncer = np.std(non_res_list)

except Exception as e:

bad = True

cost = 0

uncer = 0

print(e)

return {"cost": cost, "uncer": uncer, "bad": bad}

def return_controller(interface):

return mlc.create_controller(
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interface,

"neural_net",

max_num_runs=100,

param_names=['Num_Be', 'Num_O2', 'V_DC'],

num_params=3,

min_boundary=[1, 1, 0,],

max_boundary=[20, 20, 2.5],

no_delay=False,

)
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Appendix C

Integration Algorithms

Here, we provide the 4th order Runge-Kutta algorithm, reproduced from [25]. We

then explain how both RK4 and the Velocity-Verlet algorithms were used on a physical

system to create Fig. 3.1.

C.1 RK4 Algorithm Applied to a Physical System

The general form of the fourth order Runge-Kutta method, given by [25] is:

k1 = (∆t)f(tn, yn) (C.1)

k2 = (∆t)f

(
tn +

∆t

2
, yn +

k1
2

)
(C.2)

k3 = (∆t)f

(
tn +

∆t

2
, yn +

k2
2

)
(C.3)

k4 = (∆t)f(tn +∆t, yn + k3) (C.4)

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4) (C.5)

where ∆t is our timestep size, tn and yn are the time and estimated value of some

function y at step number n, and f(t, y) = dy
dt
, a known function for which we are

trying to find y(t) by numerical methods. A derivation of the coefficients used in the
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final equation can be found in [31].

For a simple harmonic potential, U , F (x) = −∇U = −mω2x and so d2x
dt2

= −ω2x.

We write this as two first-order differential equations:

v̇ = −ω2x (C.6)

and

ẋ = v (C.7)

that we then step forward, applying the Runge-Kutta algorithm on these equations

together. Thus, the integration algorithm for this system would be:

k1,a = −ω2xn, k1,v = vn (C.8)

k2,a = −ω2(xn +
∆t

2
k1,v), k2,v = vn +

∆t

2
k1,a (C.9)

k3,a = −ω2(xn +
∆t

2
k2,v), k3,v = vn +

∆t

2
k2,a (C.10)

k4,a = −ω2(xn + (∆t)k3,v), k4,v = vn + (∆t)k3,a (C.11)

with

vn+1 = vn +
1

6
(k1,a + 2k2,a + 2k3,a + k4,a) (C.12)

xn+1 = xn +
1

6
(k1,v + 2k2,v + 2k3,v + k4,v) (C.13)

.
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C.2 VV Algorithm Applied to a Physical System

The general Velocity-Verlet algorithm (from Eqs. 3.2 and 3.3) is:

x(tn +∆t) = x(tn) + v(tn)∆t+ a(tn)
∆t2

2
(C.14)

v(tn +∆t) = v(tn) + [a(tn) + a(tn +∆t)]
∆t

2
(C.15)

where we have replaced t0 = tn for consistency with Sec. C.1. For the same system as

discussed above (d
2x
dt2

= −ω2x), we can apply the Velocity-Verlet algorithm as follows

(using a = d2x
dt2

for clarity):

an = −ω2xn (C.16)

xn+1 = xn + (∆t)vn +
∆t2

2
an (C.17)

an+1 = −ω2xn+1 (C.18)

vn+1 = vn +
∆t

2
(an + an+1). (C.19)

Note that as we step this algorithm across n the two queries of the total force to

calculate an and an + 1 are redundant (we can save an+1 in memory and use it as

an in the next timestep), so we actually only have to calculate the acceleration once

per timestep (technically, once per timestep plus 1 since we calculate the acceleration

twice during the very first timestep, and we generally do want the very final velocity).
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Appendix D

Supplemental Figure

While getting good number resolution on the LCF-MS response is generally hard,

sometimes it is illuminating and encouraging to look at the RMS response of the full

crystal, since this is a much easier problem. Here is an old plot showing this.
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Figure D.1: RMS-velocity change in a very large, mixed crystal under a linear fre-
quency sweep. The growth of these peaks, is very encouraging, showing that it may
be possible to isolate a strong between the number of dark ions and crystal distur-
bance.
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