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Abstract

Many extensions to the Standard Model predict that the fundamental con-
stants of nature exhibit time variation. We propose using high precision mea-
surements of the vibrational and rotational energy levels of homonuclear di-
atomic molecular ions to perform a model-independent search for time varia-
tion in the proton-to-electron mass ratio µ. We have shown that a precision
measurement of two accidentally degenerate levels in 16O2

+ is capable of in-
creasing the present bounds on variation in µ by a factor of 10− 100. Prepar-
ing the internal state of 16O2

+ is complicated by its many degrees of freedom.
We will use quantum logic spectroscopy (QLS) to manipulate and probe this
molecule’s state. We will trap 16O2

+ in a linear Paul trap with a 9Be+ ion and
couple the molecule’s internal states to its motion, which is shared with the
co-trapped 9Be+. Understanding the motion of 9Be+ in the trap is necessary to
prepare and interpret the results of this experiment. This thesis focuses both
on the theoretical underpinnings of our proposed experiment and on building
the foundation for performing QLS.

We identify the molecular properties which make certain molecules promis-
ing for high precision measurements of µ variation. Molecules with deep po-
tential wells tend to be maximally sensitive to changes in µ and those with
closely-spaced vibrational levels should be easier to measure. Experiments on
N2, Cl2, Br2, and I2

+ should have an absolute sensitivity to variation in µ on
the same order of magnitude as our proposed experiment on 16O2

+.
Furthermore, we investigate the motion of a single trapped 9Be+ ion in our

linear Paul trap to prepare for future QLS experiments. We parameterize the
electric potential experienced by trapped ions. By modulating the axial trap-
ping potential and measuring the system’s resonant frequencies, we identify
these parameters and thereby fully characterize the motion of trapped 9Be+.
The techniques employed in these experiments can be used to identify an ion
co-trapped with 9Be+ by treating the system as a coupled oscillator. We show
how the axial modes of the 9Be+−9Be+ system could be distinguished from
those of the 9Be+−BeH+ system, which would confirm that our system can
identify trapped ions based on resonance shifts of a few kHz. Finally, we briefly
turn our attention to the properties of the 9Be+−16O2

+ system and discuss
the next steps in preparing to make our QLS experiments.
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Chapter 1

Introduction

Few discoveries would motivate us to reimagine the basic qualities of our reality

like witnessing a change in one of the fundamental constants of nature. These

constants give rise to the universe as we experience it; the Standard Model of

particle physics is constructed with these immutable constants at its core. If we

observe one of these constants exhibiting time-variance, the field of particle

physics would experience a monumental paradigm shift as now-extraneous

theories of reality would need to be appended to the Standard Model to account

for the discovery.

This thesis presents research that should help future researchers in Pro-

fessor Hanneke’s laboratory make a high precision measurement of one such

fundamental constant: the proton-to-electron mass ratio µ = mp/me. I have

contributed to our understanding of the powerful and versatile apparatus that

should make this precision measurement achievable. In particular, my research

focuses on how this apparatus can be used to manipulate atoms and molecules
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in spectroscopy experiments which yield precise information about the time

variation of µ.

With this goal in mind, it is with utmost enthusiasm that I offer to take

you with me on this journey of scientific discovery.

1.1 A Quest for the Unknown

Attempting to precisely measure the time variation of fundamental constants

has been a field of active research since 1937, when Paul Dirac speculated

that certain constants might not have fixed values, but vary with the age

of the universe [1]. The time variation of constants such as the fine struc-

ture constant, the gravitational constant, the cosmological constant, and the

proton-to-electron mass ratio would have a profound effect on our understand-

ing of the laws of nature. There is a particularly interesting result that emerges

from a nonzero variation in µ. Since the electron’s mass is determined by the

strength of the electroweak force and the proton’s mass is tied to the strength

of strong force interactions, such a change would indicate a relative change

in the strength of these two forces over time. The exact consequences of this

variation, and equivalently, variation in µ, are important insofar as they are

predicted by many extensions to the Standard Model.

For example, theories that predict the existence of higher dimensions in

an effort to unify the fundamental forces of nature (such as Kaluza-Klein and

superstring theories) postulate that, through its relationship to the relative

strengths of these forces, the fundamental parameter µ is constant when con-
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sidered in all dimensions, but its projections in any lower-dimensional space

should change with the shape and evolution of these dimensions; the effective

four-dimensional value would vary [2]. These theories each postulate particu-

lar shapes and time-evolutions of additional spacetime dimensions, and thus

different rates of variation of µ. Thus emerges the theoretical impetus for mea-

suring precise changes in µ: As we make increasingly precise measurements

of this ratio, we can begin discarding theories that predict different rates of

change and come closer to identifying extensions to the standard model that

are based in experimental evidence; it is a path to discovering a unified theory.

Our lab will search for fractional changes in µ by measuring the energy

differences between two closely spaced molecular vibrational states of different

electronic energy levels. Generally, the energies of these states are sensitive

to changes in µ, particularly if these two states are nearly degenerate [3, 4].

Our lab will use an oxygen molecular ion (16O2
+) to make our measurements

of µ, due to a few useful properties of its molecular structure and energy

level spacing. I will discuss this choice and the theoretical underpinnings of

this decision in Chapter 2, where I will also introduce other potentially useful

molecules.

1.2 Quantum Logic Spectroscopy

Molecules such as 16O2
+ exhibit more complex physical phenomena than atoms

due to their rotational and vibrational degrees of freedom. Although these

degrees of freedom are the source of molecular µ-dependence, they make
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molecules problematic to manipulate. Specifically, the internal states of oxy-

gen we wish to study are difficult to prepare and oxygen’s transitions make it

unsuitable for laser cooling. To overcome these challenges, our lab will employ

a general technique known as Quantum Logic Spectroscopy (QLS) [5], using

an ion trap to confine the motion of positively charged particles to a small

region of space which can be easily studied and controlled.

In our case, QLS involves trapping an atomic ion (the logic ion) alongside

16O2
+ (the spectroscopy ion). The key to QLS is that the internal state of

either ion can be coupled to its motion, which is shared via the Coulomb force.

When the motion is coupled, preparing a specific state in the spectroscopy ion

is equivalent to preparing a corresponding state in the logic ion. The logic ion

acts as a probe to both prepare and detect the internal states of the molecule.

To be effective, the logic ion should be easy to cool and its internal states

should have a high detection efficiency. Conveniently, this technique bypasses

the difficulty of manipulating or detecting the molecule directly.

One of the many advantages of this technique is its versatility. As long as

our ion trap is able to simultaneously trap both an 16O2
+ molecule and a logic

ion, we do not need to develop a system specifically designed to manipulate

oxygen; instead, we can design the apparatus to cool and detect a particular

species of logic ion, and rely on the coupled motion of this ion and 16O2
+

to perform our experiments. Such a setup allows us to easily exchange the

molecule we wish to study without dismantling our ion trap or laser system.

Our lab uses beryllium (9Be+) as the logic ion, since it has easily driven

transitions and can be efficiently cooled. Its properties in such experiments
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are well-documented [5, 6].

1.3 The Apparatus

Above, I have described the end goal of this lab’s experiments and the general

technique we will use to collect data. Before we can perform these exciting

QLS experiments, however, we need a laboratory setup capable of cooling and

manipulating the states of trapped ions. This section describes the apparatus

built by many members of this lab over the past few years and how it can be

used to accomplish our lab’s goal. Our apparatus consists of an ion trap used

to confine the logic and spectroscopy ions and an optics system designed to

tune a laser to particularly useful frequencies for manipulating the states of

beryllium.

1.3.1 Ion Trapping

The purpose of our ion trap is to confine ions to a specific region of space

and make trapped ions move in well-understood ways. This will allow for

easy manipulations of their motion and thus their internal states and energy.

Our work has been performed on ions trapped in a linear Paul trap located

in an ultra-high vacuum. These traps are created by applying a combination

of static and dynamic electric fields to electrodes, arranged in such a way to

create a minimum in the potential field in the center of the trap. Effectively,

a trapped ion sees a superposition of two potentials which together yield a

three-dimensional saddle-shaped potential energy landscape.
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The first potential, created by the dynamic fields, oscillates with a high

enough frequency to keep ion motion confined to the center of the trap by

inverting this saddle shape (Fig. 1.1); this component is responsible for the

curvature and time-dependence of the saddle shape. If we define the potential

energy of an ion in the trap such that at the center of the trap the ion has

no potential energy, we can treat this potential as quadratic, since the leading

term in a Taylor expansion of the potential about the equilibrium point is the

second-order term.

Controlled entirely by electrostatic charge distributions, the second poten-

tial provides trapping in the third dimension (defined as the axial dimension),

and this potential can likewise be considered quadratic. This component con-

fines particles to the surface of this saddle shape. By design, ions are more

weakly trapped in this dimension than in the others. This causes trapped ions

to spread out in a chain along the z-axis. Since we can control the axial com-

ponent of the potential independently of the other components, we can easily

manipulate the axial motion of the ions using principles of classical mechanics

to treat this system as a coupled harmonic oscillator in the axial dimension.

Thus, we can easily analyze and control the motion of trapped ions, which will

allow us to perform QLS experiments. I will discuss the theory behind linear

Paul traps in more detail in the context of trapped ion motion and resonances

in Chapter 3.
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Figure 1.1: Saddle-shaped Potential of a Paul Trap. This illustration shows
the saddle-like potential landscape created by a Paul trap’s static and dynamic
electric potentials. The dynamic contribution to this potential oscillates at a
well-known frequency, causing the saddle to invert once every half period. If
the frequency of oscillation is high enough, a particle in this potential will be
confined to the center of the saddle.
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1.3.2 Laser Cooling

In order to prepare a known state of a trapped 16O2
+ molecule, we must be

able to cool the co-trapped 9Be+ to an appropriate low-energy state. This is

accomplished by exploiting the Doppler shift of excited ions in a technique

known as Doppler cooling. An atom struck by a photon with an energy corre-

sponding to one of the atom’s electronic energy levels will absorb the photon,

causing a change in the atom’s momentum equal to the momentum of the

photon. The photon will later be emitted in a random direction, causing a

corresponding change to the atom’s momentum. Now, imagine the frequency

of the incident photon corresponds not to the exact energy of the transition,

but to a slightly lower energy (that is, it is detuned to a redder frequency).

The atom is more likely to absorb such detuned photons from a laser beam

if the atom has a velocity directed toward the photon source, since from the

atom’s reference frame, the Doppler effect will blueshift the beam, effectively

bringing it closer to resonance. Conversely, if the atom is traveling in the same

direction as photons from the source, the light will appear redshifted to the

atom, effectively shifting the beam’s frequency further from the atom’s reso-

nance. Thus, if a detuned beam is incident on an atom, the atom will more

often absorb photons moving opposite its direction of travel and, therefore, its

momentum will decrease. This ultimately reduces its thermal velocity, cooling

the atom.

The random changes to the atom’s velocity resulting from the later emission

of the photon do not prevent the cooling (since the average of these changes

results in no net change in momentum), but they do limit it. The atom
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will spontaneously emit one photon per natural lifetime of the excited state,

effectively causing the atom to undergo a random walk at a rate equal to the

natural linewidth γ of the excited state. This limiting motion is associated

with the atom’s minimum temperature, known as the Doppler temperature,

which is defined by

kBTD ≡
h̄γ

2
, (1.1)

where kB is Boltzmann’s constant and h̄ is the reduced Planck constant [7].

Our lab uses the transition 2S1/2 ↔ 2P3/2 in 9Be+ for Doppler cooling, which

has a linewidth of γ/(2π) = 19.4 MHz and thus a Doppler temperature of

TD = 466 µK.

The experiments I describe in Chapter 3 rely on classical phenomena of

trapped ions. These experiments only require that trapped beryllium ions are

cool enough that their thermal motion is localized on the scale of the ion trap

such that they can be seen as crystals with radii of a few µm, not blurs. As

such, my experiments were performed using only Doppler cooling.

However, QLS experiments use motion to transfer information, so mini-

mizing the ions’ thermal motion maximizes the fidelity of the information. To

perform QLS, we will want to cool beryllium ions below the Doppler limit

(and ideally, to their motional ground state). Resolved sideband cooling ac-

complishes this cooling. This process uses two lasers to stimulate emission

which lowers the atom’s hyperfine state without affecting its motional state.

We tune the first laser to the transition from the S state’s F = 1 level to

an energy slightly below the P state (detuned by GHz), and the second laser

to the transition from the S state’s F = 2 state to the same energy. When
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these lasers are incident on beryllium, ions in the |S, F = 1〉 state will absorb

a photon from the first laser and immediately emit a photon with an energy

corresponding to that of the second laser via stimulated emission. Instead of

electronically exciting the atom to the P state, these lasers bring the atom to

a different hyperfine state in the same electronic energy level. This is called a

stimulated Raman transition and is discussed in the context of cooling beryl-

lium atoms in Refs. [5, 8, 9]. This process should be able to bring 9Be+ to the

ground state.

1.3.3 Frequency Preparation

In conclusion, the apparatus must be able to output five ultraviolet wave-

lengths to cool and perform experiments on 9Be+. We need two resonant

beams, one for each hyperfine state of the 2S1/2 ↔ 2P3/2 transition. The beam

tuned to the F = 1 state is a repump beam that, via a transition to the P

state, returns atoms to the F = 2 state. The beam tuned to the F = 2 state

is the (slightly red-detuned) resonant beam that is used for Doppler cooling.

Because it causes spontaneous emission of photons, the resonant beam can be

used to detect the ions on a photomultiplier tube or camera. The third beam

is a detuned beam with an energy between both hyperfine transitions. Since

it is far from resonance, the detuned beam only excites transitions in very

hot ions and is unable to bring trapped 9Be+ close to the Doppler limit. It is,

however, very effective at cooling ions from room temperature to temperatures

suitable for detection and Doppler cooling with the resonant beam. The other

two beams drive the stimulated Raman transitions. The experiments I discuss
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in Chapter 3 use the detuned beam to cool ions and the resonant beam to

detect them.

We create these beams by preparing one laser at approximately 313 nm

via third-harmonic generation (a multistep process described below), which we

then send through an appropriate modulator to tune it precisely to the desired

frequency. Our setup uses acousto-optic modulators (AOMs) to accomplish the

fine tuning of the UV light. AOMs diffract and shift the frequency of light via

the acousto-optic effect, whereby a mechanical strain on a material changes its

permittivity [10]. In an AOM, sound waves are the source of this mechanical

stress. When incoming light passes through this material, it is diffracted and

experiences a frequency shift equal to the frequency of the acoustic wave. In

our setup, we send the UV beam through a series of AOMs corresponding to

the frequencies in which we are interested. If we turn on one AOM, it will

shift the frequency appropriately and diffract the beam. We then send this

diffracted beam through the center of the trap.

Since these modulators accomplish the fine-tuning, all we need to ma-

nipulate beryllium ions is a single laser that can output a UV frequency

around 313 nm consistently at a sufficient power. Unfortunately, generat-

ing light at this wavelength is not straightforward. No such laser is readily

accessible because few available semiconductors have optical gain at this wave-

length [11, 12]. Thus, we need to employ nonlinear optics to alter the frequency

of a source laser to the desired frequency. Two nonlinear optical phenomena are

particularly useful in our setup: second-harmonic generation (SHG) and sum-

frequency generation (SFG). In SHG, a source laser is doubled in frequency as
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it passes through a particular nonlinear media. Effectively, identical photons

from the source are combined, resulting in photons of twice the energy (and

hence, twice the frequency). Similarly, in SFG, two sources are combined,

yielding output light which has a frequency equal to the sum of the sources’

frequencies.

It has been shown that, via SHG, a dye laser emitting at 626 nm can

effectively be used to cool 9Be+ ions [13]. However, for purposes of balancing

efficiency, power, and cost [11], our lab uses an external cavity diode laser

(ECDL), emitting at 940 nm, as a source. Through a combination of SHG and

SFG, we can generate light at the desired UV frequency. The ECDL frequency

is doubled via SHG, yielding blue light with a wavelength of 470 nm, which

is then summed via SFG with the light at 940 nm, resulting in light with a

wavelength of 313 nm. Since we have effectively tripled the frequency of the

source, this is called third-harmonic generation (THG). The entire laser system

is illustrated in Fig. 1.2. It can be roughly broken into four steps.

The first two steps directly affect the infrared ECDL source. Some of the

light is diverted to a Fabry-Pérot cavity to be referenced against a helium-

neon laser to stabilize the ECDL. This step was implemented and tested by

Chu Cheyenne Teng [14]. A beam splitter separates some of this IR light

and directs it toward the SHG cavity, while the rest skips the SHG step,

since it will be used in the SFG step. Both beams are sent through tapered

amplifiers designed to raise their powers to levels that can, after the power

loss involved in THG, effectively perform cooling and internal state control

of trapped beryllium. The tapered amplifier’s design and specifications are
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discussed by Edward Kleiner [8]. Both the SHG and SFG steps occur in

cavities which are designed to pass the incoming laser through a nonlinear

material many times (via precise alignment of mirrors) to build up output

power. Without this buildup, only a small fraction of light at the altered

frequency would be created in these processes.

For second-harmonic generation, we initially used the crystal bismuth trib-

orate (BiBO, BiB3O6) as the nonlinear material for frequency conversion, but

eventually replaced it with lithium triborate (LBO, LiB3O5) to improve sta-

bility. BiBO is particularly useful due to its high nonlinear coefficient which

results in a high conversion efficiency in this process [15]. However, at the high

end of our operating power, BiBO experienced photorefractive damage which

severely diminished the magnitude and stability of the converted light over

timescales of tens of minutes. Since the limitations of BiBO and the nature of

this photorefractive damage are not well-documented, I collected information

related to BiBO’s performance in the context of SHG, which I discuss in Ap-

pendix A. I hope this information is useful to those studying materials science

and optics, but its performance was inadequate for the purposes of our THG

setup. Thus, we use LBO as a nonlinear crystal for SHG instead. With a lower

nonlinear coefficient, LBO produces less blue light for a given IR input than

BiBO, but experiences none of the same damage as BiBO at high operating

powers. Because it can withstand higher operating powers, we can produce

higher power stable blue light with LBO than with BiBO.

The blue light from the SHG cavity is combined with the earlier split

infrared light to produce UV in the sum-frequency generation step. We use
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Figure 1.2: Hanneke Lab THG Laser System. The main components include
the external cavity diode laser (ECDL), the tapered amplifier (TA), the stable
helium-neon reference laser (HeNe) in the Fabry-Pérot (FP) cavity, the LBO
crystal responsible for second-harmonic generation, and the BBO crystal re-
sponsible for sum-frequency generation. This is from Ref. [11], where the other
elements of the system are discussed more completely.
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β-barium borate (BBO, BaB2O4) as the nonlinear crystal for this process.

As discussed in Ref. [11], this THG system can output approximately

36 mW of 313 nm light with power variations under 10% over the course of

one day. Its typical output is 5 − 10 mW, which is sufficient to perform the

experiments discussed in Chapter 3.

1.4 Developing a Quantum Toolbox

This laser system’s true strength is its versatility, as it is able to cool and

manipulate the internal states of trapped 9Be+ ions by turning on particular

AOMs in a sequence of pulses. By programming a pulsing procedure, we

can perform measurements on cooled beryllium ions, effectively allowing us to

begin developing a toolbox of information and techniques for manipulating our

logic ion. This is the overarching goal of my research. With this information

in hand, our lab can delve into QLS experiments and probe the time variation

of the proton-to-electron mass ratio.

The first element of this toolbox is a theoretical one, not related to the

logic ion itself, but to oxygen, our spectroscopy molecule. As I mentioned

briefly in Sect. 1.1, degenerate vibrational states in 16O2
+ are sensitive to time

variation of µ. However, our choice of oxygen as the molecule we use to detect

these changes is, though informed by molecular theory, somewhat arbitrary.

I will start furnishing this quantum toolbox in Chapter 2 by discussing what

other molecules might be useful in this QLS experiment. My aim is twofold:

determine to what extent oxygen’s sensitivity to variation in µ is unique, and
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provide a list of compelling alternative spectroscopy ions which can serve to

extend and support the experiments our lab performs on oxygen.

The bulk of my work has been experimental, directly related to the proper-

ties of our linear Paul trap and how the 9Be+ logic ion behaves in the trapping

field. As I mentioned in Section 1.2, QLS experiments rely on a transfer of

information, encoded in classical motion and quantum internal states, from

the spectroscopy ion to the logic ion and vice versa. Chapter 3 focuses on

decoding the classical motion of trapped beryllium, so we can easily manipu-

late its movement (and thus the movement of co-trapped oxygen) in the trap.

This involves solving and parameterizing the system’s equations of motion. I

approximate the trapping potential as harmonic and use the trap’s resonant

frequencies to find the values of parameters which appear in the electric poten-

tials experienced by trapped ions. Armed with this information, I prepare for

QLS experiments by demonstrating the precision required for my resonance-

based analysis to identify co-trapped ions.
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Chapter 2

Precision Measurements with

Diatomic Molecules

Both cosmological and laboratory spectroscopy experiments have attempted

to detect changes in µ over time. These experiments do not measure a spe-

cific change, but instead they place a bound on the maximum possible time

variation, which is smaller in systems with less systematic error. The small-

est laboratory bound on variation in µ, measured as µ̇/µ, is on the order

of 10−16 yr−1, found from atomic clock experiments which rely on hyperfine

measurements of cesium atoms [16, 17]. Therefore, these experiments require

a model of how the nucleon mass affects nuclear magnetic moment to yield a

precise measurement of µ.

In comparison, our method is model-independent, since we will directly

observe the inertial mass in motion. We will use the vibrational and rota-

tional energy levels of oxygen molecules to detect changes in µ. While the
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bounds on such molecular measurements of µ̇/µ are currently larger than

atomic clock measurements, a number of studies have shown precision molec-

ular spectroscopy experiments to be promising for tightening the bounds on

variation in µ [3, 4, 18–20]. In particular, DeMille et al. [3] proposed that

these experiments in Cs2 could potentially measure a fractional variation in µ

on the order of 10−17.

As discussed in our lab’s recent publication [4], our experimental procedure

using 16O2
+ has the potential to increase the present bounds on variation in

µ by a factor of 10 − 100. In this chapter, I briefly summarize why our QLS

experiments with 16O2
+ are capable of such precision. I explain why molecular

spectroscopy is promising and why 16O2
+ is particularly sensitive to variation

in µ. Additionally, I expand upon our discussion in Ref. [4] by presenting

other molecules that might be useful in similar spectroscopy experiments due

to their similarly high absolute sensitivity to this variation.

2.1 Molecular Potential Wells

Molecular sensitivity to variation in µ results from the mass-dependence of its

energy levels. Thus, understanding the shape of a particular molecule’s po-

tential energy curve allows us to investigate the experimental viability of the

molecule. This section explains how these potential wells are shaped and intro-

duces the parameters and equations which will be referenced in the following

sections to explain how sensitivity to µ arises.

A diatomic molecule’s vibrational potential energy varies as its internuclear
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distance changes. This relationship is approximately harmonic over small os-

cillations about equilibrium, but diverges from the behavior of a harmonic

oscillator far from equilibrium. As the two nuclei approach each other, the

Coulomb repulsion between them brings the system’s energy toward infinity.

As the internuclear distance becomes large, the Coulomb attraction responsi-

ble for the atoms’ bond weakens, so the system’s potential energy asymptotes

to zero (assuming the convention of bound atoms having negative potential

energies). We can describe this anharmonic behavior as a perturbation of a

single-particle harmonic oscillator with a mass equal to the reduced mass of

the two-atom system.

The potential energy of a single-particle harmonic oscillator is proportional

to the square of the particle’s distance from equilibrium q = r − re. We can

generally model anharmonicity by adding terms with higher-order dependence

on q with coefficients much smaller than that of the second order term. For

a quantum mechanical system, the energy eigenstates of this anharmonic po-

tential are the solutions of the Schrödinger equation.1 The resulting energy

eigenstates are typically parameterized with a set of molecular constants ωe,

ωexe, ωeye, etc. with units of inverse wavelength [21]. The energies are

Eν/(hc) = ωe(ν + 1
2
)− ωexe(ν + 1

2
)2 + ωeye(ν + 1

2
)3 + ... (2.1)

where ν is the vibrational quantum number (= 0, 1, 2...), h is Planck’s constant,

c is the speed of light, and the molecular constant appearing in each successive

term is much smaller than the one appearing in the term before it [22]. Unlike

1This is a phenomenological model, not a first principles description.
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the harmonic oscillator, the energy levels of the anharmonic oscillator are not

evenly spaced: they grow closer together as ν increases. Often, it is convenient

to express energies in units of wavenumber (inverse wavelength), accomplished

by dividing energy by hc, so I will group this factor under relevant energies

throughout this section for ease of conversion.

The Morse potential, an approximation of the potential energy of a di-

atomic molecule, provides a means of equating measured values of the term

coefficients in Eq. 2.1 to characteristic quantities of the molecule. This gives us

a means of solving for these coefficients or characteristic quantities and allows

us to easily calculate the vibrational energy levels. For a given internuclear

distance r, the Morse potential is

U(r) = De[1− e−β(r−re)]2, (2.2)

where De is the depth of the potential energy well, defined by the difference in

energy between the bottom of the potential well and the energy of the dissoci-

ated atoms (r =∞), re is the equilibrium bond distance, and β is a constant

with units of inverse length which controls the width of the potential well [21].

Substituting this expression for the potential energy in the Schrödinger equa-

tion yields anharmonic vibrational energies

Eν/(hc) = β

√
De

2π2c2µ
(ν + 1

2
)− hβ2

8cπ2µ
(ν + 1

2
)2, (2.3)

where µ is the reduced mass of the molecule. The Morse potential is an excel-

lent approximation of molecular potential energy for all diatomic molecules.
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It only deviates significantly from the experimentally determined curve when

the energy of the molecule is close to the dissociation limit [21].

Having worked out the energy eigenstates for the Morse potential, we can

now express the physical quantities in Eq. 2.3 in terms of the well-documented

molecular constants ωe and ωexe which appear in Eq. 2.1. To do this, I will

assume that the terms beyond the first two are so small that they do not

significantly contribute to the energy. Explicitly,

Eν/(hc) ≈ ωe(ν + 1
2
)− ωexe(ν + 1

2
)2. (2.4)

By equating Eq. 2.4 and Eq. 2.3, we can see that

β =

√
2π2c2µ

De

ωe (2.5)

and

De/(hc) =
ωe

2

4ωexe
. (2.6)

As I will describe in Section 2.2, the magnitude of the dissociation energy

for a molecule directly affects the sensitivity that molecule exhibits to variation

in the proton-to-electron mass ratio. Thus, the Morse potential approxima-

tion gives us a quick means of determining which molecules are promising

for our QLS experiment, since ωe and ωexe are documented for a variety of

molecules [22].
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2.1.1 Molecular State Energy and Dependence on µ

The total potential energy of a molecule includes electronic and rotational

energy terms in addition to the vibrational terms well-approximated by Eq. 2.4.

The rotational energy comes from the molecule’s angular momentum and can

be expressed as

EJ =
h̄2

2I
J(J + 1), (2.7)

where I is the molecule’s moment of inertia, J is its total angular momentum

quantum number, and Behc ≡ h̄2/(2I) is a rotational constant. Therefore, a

molecule in a particular quantum state with electronic energy Te has an energy

E/(hc) = Te + ωe(ν + 1
2
)− ωexe(ν + 1

2
)2 +BeJ(J + 1). (2.8)

While this molecular state is not explicitly dependent on the proton-to-

electron mass ratio µ, it has implicit dependence through multiple parameters

in this equation. DeMille et al. [3] reveals this dependence through the fol-

lowing argument. First, assume that the mass of an electron me is fixed:

Measuring variation in µ is now equivalent to measuring a change in the mass

of a proton mp. Fixing me results in no loss of generality and implies that de-

pendence on µ is equivalent to dependence on mp, which itself is proportional

to the reduced mass of the two-atom system. Therefore, any dependence on

the reduced mass in Eq. 2.8 corresponds to the same dependence on µ.

Recall that the frequency of oscillation ω of a harmonic oscillator is re-

lated to the oscillating mass M by ω ∝ 1/
√
M . This is likewise true for

the harmonic term in Eq. 2.8: ωe scales as µ−1/2. Furthermore, the constant
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in the anharmonic vibrational term and the rotational constant Be scale as

µ−1 [3, 4]. Generally, Te depends on the reduced mass of the nucleus and the

electron. Since the nucleus is much heavier than the electron, the reduced

mass is approximately equal to the mass of the electron. As a consequence,

the dependence of Te on nuclear mass and, therefore, on µ, is negligible.

2.2 Experimental Sensitivity

Variation in µ can be detected by precisely measuring the energy difference be-

tween two internal states with different dependences on µ. For levels E ′(µ) and

E ′′(µ), this difference is expressed as h̄ω = E ′(µ) − E ′′(µ). This corresponds

to a relative change in µ of

∆µ

µ
=

1

µ

(
∂ω

∂µ

)−1

∆ω =

(
∂ω

∂(lnµ)

)−1

∆ω (2.9)

where ∂ω/∂(lnµ) is referred to as the absolute sensitivity of the transition [4].

The absolute sensitivity to variation in µ of a molecule in a particular state

with an energy given by Eq. 2.8 is

∂ω

∂(lnµ)
=

1

hc

∂E

∂(lnµ)
= −1

2
ωe(ν + 1

2
) + ωexe(ν + 1

2
)2 −BeJ(J + 1). (2.10)

This demonstrates that a fractional change in µ can be detected by precise

measurements of the energy of two different vibrational or rotational states.

However, as noted in Ref. [4], transitions between states with large differences

in J are not allowed by selection rules, and Be is typically smaller than ωe, so
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transitions between vibrational states tend to be more sensitive.

Furthermore, the magnitude of the sensitivity grows approximately linearly

at low vibrational states, but the term proportional to ν2 rapidly reduces the

sensitivity of vibrational levels close to the dissociation energy De. The abso-

lute sensitivity is maximized at vibrational states with energies Eν ≈ .75De,

corresponding to a peak in sensitivity ∂ω/∂(lnµ) ≈ .25De [3, 23]. This peak

sensitivity leads to the first important consideration in choosing a spectroscopy

molecule for this experiment: Molecules with deeper molecular potentials will

exhibit more sensitivity to variation in µ.

To make the most precise measurement of ∆µ/µ, we need to use a transition

that reduces the statistical uncertainty δω with which we can measure ∆ω. The

precision of our measurement is dependent on the linewidth of the transition

Γ. Assuming white noise, it is given by

δω =
Γ√

MS/δS
, (2.11)

where S/δS is the signal-to-noise ratio and M is the number of independent

measurements [4]. Performing an experiment on a transition with a narrow

linewidth thereby maximizes the precision of the measurement. For instance,

if we use a transition between the ground electronic state and an excited state

which cannot decay into any other state as suggested in Ref. [3], it will have a

narrow linewidth if it is forbidden by spin selection rules (which we can drive

via spin-orbit coupling) [4]. Thus, we will look for states with differing spin

multiplicities.
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To enhance the sensitivity of the measurement, we will measure transitions

between a state near the peak sensitivity to µ and a state with very little

sensitivity to µ. However, driving a transition between two states with a large

energy difference and the aforementioned criteria is difficult to accomplish [4],

so we will focus on transitions between states of nearly degenerate energies.

2.3 Promising Molecules

We have now identified the most important considerations for the proposed

measurement. A promising molecule should have a deep molecular potential

(a large dissociation energy), with another electronic energy level of a different

spin multiplicity dipping into the ground state (that is, the two levels have the

same dissociation energy). Furthermore, its molecular constants ωe and ωexe

should be relatively low. Eq. 2.4 indicates that if these constants are small,

the vibrational levels should be closely-spaced, which increases the likelihood

of an accidental degeneracy between a state of high absolute sensitivity to

µ and a state with low sensitivity to µ. If the lower electronic level state

is in a vibrational state corresponding to an energy of approximately .75De,

we maximize its µ-dependence. A transition between this level and a higher

electronic energy level that is nearly in its vibrational ground state maximizes

the difference in µ-dependence between the levels.

Generally, we will confine our search for molecules with these properties to

those that are homonuclear. In homonuclear molecules, symmetry eliminates

half the rotational states and forbids electric dipole (E1) transitions within an
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electronic state (transitions proceeding as electric quadrupole transitions will

have narrower linewidths), as well as other systematic effects [4].

The oxygen isotope 16O2
+ fulfills the above criteria, making it experimen-

tally promising. We discuss the details of its useful transitions in Ref. [4], the

most important aspects of which I outline below. With a ground state energy of

54 600 cm−1, oxygen has a deep electronic potential. The absolute sensitivity

of the vibrational states in the three lowest electronic levels of oxygen is shown

in Fig. 2.1. The two lowest electronic states, |X2Πg〉 and |a4Πu〉 have different

spin multiplicities (and the a state is coupled to the nearby |A2Πu〉 state with

the same multiplicity as the ground state, so we should be able to drive the

transition). Furthermore, we have identified multiple transitions with energy

differences less than 10 cm−1, shown in Fig. 2.2. Particularly promising is the

transition between the |X, ν = 21〉 state and the nearly degenerate |a, ν = 0〉

state, which has an absolute sensitivity of −∂ω/∂(lnµ) = 12 600 cm−1 (contri-

butions from the third term in Eq. 2.10 should be on the order of 100 cm−1).

The linewidth of this transition falls within the range Γ/(2π) = 0.07− 10 Hz.

The high sensitivity combined with the narrow linewidth of this transition

should yield a statistical precision of δµ/µ on the order of 4× 10−18 in 1 day.

I searched the literature to determine which other homonuclear diatomic

molecules fulfill the criteria described above and, therefore, could also be used

to make a high precision measurement of δµ/µ. I began by checking the

homonuclear entries listed by Huber and Herzberg in Ref. [21]. This book

compiles the results of past spectroscopy experiments and lists molecular con-

stants for the known electronic energy levels of many diatomic molecules. Its
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Figure 2.1: Absolute Sensitivity of Oxygen States to µ Variation. The sensi-
tivity is calculated for the three lowest electronic energy levels using a Morse
potential approximation. This figure is from Ref. [4], where we discuss the
sensitivity of the three transitions marked by arrows.

Figure 2.2: Morse Potential Curves for the Lowest Electronic Levels in 16O2
+.

Experimentally measured vibrational levels are shown as horizontal lines. The
inset shows nearly degenerate energy levels that are suitable for high absolute
sensitivity to variation in µ. This figure is from Ref. [4].
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data on electronic ground states tends to be reliable, but it often lists im-

precise or contested information regarding excited levels. After preliminarily

identifying candidate molecules from this source, I performed a citation-based

search to find articles that reference Huber and Herzberg and discuss homonu-

clear molecules. These other articles typically list more precise values of ωe

and ωexe, clarify the existence of excited states (with more precise potential

depths listed for these states), and occasionally reveal other homonuclear di-

atomic molecules with similar properties. N2, Cl2, Br2, and I2
+ were among

the most promising molecules this search revealed.2 Based on the depths of

these molecules’ potential wells, their absolute sensitivities to variation in µ

(Eq. 2.10) should all be within an order of magnitude of the absolute sensitiv-

ity of 16O2
+. Their molecular properties are documented in Ref. [21, 24–26]

and compiled in Appendix B alongside those of 16O2
+ [4, 27, 28] for reference.

Unfortunately, my search was limited by the focus and precision of past

spectroscopy experiments. The constant ωexe in particular was only avail-

able for a small portion of homonuclear diatomic molecules. Frequently, their

uncertainties are high or their values are disputed [21]. This is to say that

my search is not exhaustive, and other molecules beyond those discussed here

might be equally useful for making a precision measurement of µ variation.

Many of the molecules listed have a much higher density of vibrational

states than oxygen, since their values of ωe and ωexe are smaller by about

2I did not limit this search based on which molecules our ion trap is capable of trap-
ping, nor which would be easiest to manipulate with our 9Be+ logic ion. This is primarily
because spectroscopic information on cations is scarce, but also because I hope for this list
of molecules to be useful for other lab setups as well as our own. The molecules listed here
refer to their most common isotopes.
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Figure 2.3: Morse Potential Curves for the Lowest Electronic Levels in 14N2.
Calculated vibrational energy levels are shown as horizontal lines. The near
degeneracy of the |X, ν = 36〉 and |B, ν = 0〉 states, combined with a large
dissociation energy, indicates that this transition is highly sensitive to changes
in µ. The close a state could provide spin-orbit coupling to make this transition
feasible.
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an order of magnitude. N2 is the exception, but is nevertheless a promising

candidate due to its exceptionally deep ground state potential well.

Since the |X1Σ+
g 〉 ↔ |B3Σ−u 〉 transition in 14N2 should have the highest ab-

solute sensitivity to variation in µ among the transitions tabulated, I calculated

this molecule’s energy levels (Eq. 2.8). A Morse approximation and estimated

values for these states’ vibrational levels are shown in Fig. 2.3, alongside those

of the |a1Σ−u 〉 state which, through spin-orbit coupling with the B state, could

make this transition feasible. In particular, the |X, ν = 36〉 state is nearly de-

generate with the |B, ν = 0〉 state, with an energy difference of only 23 cm−1,

indicating the high relative sensitivity of this transition. Furthermore, the

|X, ν = 36〉 state has an energy E36 ≈ .69De, which, combined with the depth

of nitrogen’s ground state potential well, signifies that this transition should

have an absolute sensitivity to µ larger than that of oxygen. Indeed, the ab-

solute sensitivity of this transition is −∂ω/∂(lnµ) = 23 600 cm−1, about twice

that of the proposed transition in 16O2
+. A more detailed analysis of nitrogen

is needed to determine the linewidth of this transition and, thus, the statistical

precision δµ/µ of our experiment.

The presence of such a transition in 14N2 yields two important pieces of

information. First, it indicates that the spacing of vibrational levels is suf-

ficiently narrow to find nearly degenerate levels with energies approximately

.75De for molecules with somewhat large ωe and ωexe; the magnitude of De,

setting the limit of the absolute sensitivity, is a more important considera-

tion than the density of vibrational levels. It also confirms that the particular

arrangement of energy levels in 16O2
+ that make it suitable for our QLS ex-
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periment is not unique. Precision measurements of µ variation can be made

with many different molecules.
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Chapter 3

Ion Trap Parameterization and

Resonances

To use beryllium as the logic ion in quantum logic spectroscopy experiments,

we need to understand the dynamics we should expect this ion to exhibit. If

we desire to prepare a specific state in oxygen, hope to carefully manipulate

it, or simply confirm that it is successfully loaded and trapped alongside the

beryllium, we need to understand how beryllium behaves in the ion trap. In

particular, the Coulomb force will couple the motion of beryllium to oxygen.

Thus, measuring the changes in resonances of beryllium will be the most direct

means to identify trapped oxygen. In this chapter, I will begin by giving an

overview of the theory behind the linear Paul trap we use to trap ions, which

will lead to the equations governing the motion of trapped ions. We will

use this framework later in this chapter to identify key pieces of information

which constitute this quantum toolbox and will be useful for interpreting and
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preparing the internal states of oxygen molecules.

3.1 Trap Properties

An ion trap is an apparatus designed to confine a charged particle to a well-

defined region of space using electromagnetic fields. Our lab is interested in

trapping positively-charged atoms and molecules, so our ion trap uses electric

fields to confine ions. The process of trapping ions is complicated by Earn-

shaw’s Theorem: A collection of point charges cannot be kept in a stable

equilibrium only by electrostatic interactions [29]. To address this, such traps

need to use dynamic electric fields created by oscillating potentials in addition

to static fields created by static potentials. Our lab uses a linear Paul trap

built by Shenglan Qiao to create the desired trapping field [30].

Originally designed by Wolfgang Paul [31], a linear Paul trap generates

a three-dimensional trapping potential where the oscillating field generates a

time-averaged force on trapped charges towards the center of the trap in the

two radial dimensions and electrodes with static (DC) potentials are arranged

axially to confine charges in the third dimension. To trap ions, these traps use

an oscillating potential in the radio frequency (RF) range. Our trap has four

rod-like electrodes extending in the z-axis to produce these potentials. The

RF potential is applied to two non-adjacent electrodes, and the remaining two

electrodes are segmented into five sections with DC voltages which increase

in magnitude with distance from the center. Figure 3.1 illustrates the Paul

trap constructed for our experiments. The corresponding segments on the
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Figure 3.1: Solidworks Rendering of the Hanneke Lab Paul Trap. The four
electrodes are arranged around the axial dimension of the trap. The two
segmented electrodes with applied DC voltages are indicated by the orange
arrows; the other two are the unsegmented RF electrodes. This rendering was
created by Jim Kubasek.

two electrodes are typically set to the same voltage, but we can adjust this

differential to shift the equilibrium position of the trapped ions if desired.

When they are set to the same voltage, I will refer to the voltages on these

electrodes as V = (V1, V2, V3, V4, V5).

As discussed in Section 1.3.1, the trapping potential of such a trap is

quadratic and saddle-shaped (Fig. 1.1). The idealized and most general form

of the quadratic trapping potential Φ generated by these traps can be written

Φ = Φ0(Ax2 +By2 + Cz2), (3.1)

where A, B, and C have units of inverse length squared and Φ0 is some time-
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dependent electric potential. For an arbitrary voltage on each electrode, one

could create a numerical model that describes the behavior of these param-

eters. Instead, we parameterize Φ with relevant length scales and electric

potentials and measure dimensionless parameters A, B, and C. Furthermore,

we treat the potentials created by the RF and DC electrodes separately, with

the acknowledgement that the total potential experienced by an ion in the

trap is a superposition of these two potentials.

The potential created by the DC electrodes ΦDC is often parameterized in

terms of the potential applied to the DC electrodes U0 and a characteristic

trap length factor z0, which is conventionally taken to be half the length of

the center electrode. That is,

ΦDC =
U0

z0
2
(Ax2 +By2 + Cz2). (3.2)

Our trap uses five pairs of DC voltages applied to the electrodes to trap

particles axially, so there is ambiguity in what U0 is in this setup. Generally, if

the ions are confined to the center of the trap, they will experience a potential

largely created by the trapping potential on the inner three pairs of electrodes.

Thus, to a good approximation, we can treat the difference in voltage between

the center pair and the adjacent pairs as U0. I will discuss the minor effect of

this treatment in the context of trap parameterization in Section 3.4.

Both the DC and RF potentials must satisfy Laplace’s equation (∇2Φ = 0),

so A+B+C = 0. Much work on ion trapping is done in the case of a trap with

rotational symmetry about the z-axis, yielding A = B = −C/2 and, thus, a
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quadrupolar potential. This rotational symmetry can be achieved by applying

an identical array of DC voltages to each of the four electrodes surrounding

the trap axis.

Our trap does not have this radial symmetry, since the two RF elec-

trodes are set to DC ground. To ensure the potential equation always satisfies

Laplace’s equation, we introduce a constraining parameter σ and set C = 1.

These changes give

ΦDC =
U0

z0
2

[
z2 −

(
σx2 + (1− σ)y2

)]
. (3.3)

Notice that the symmetric trap is given by the condition σ = 1/2.

Unlike the quadrupole trap, our trap has well-defined x- and y-axes due to

the constraint imposed by the system’s Laplacian. This will become particu-

larly important in the context of radial frequencies of oscillations (discussed

in Sect. 3.2.2), as it breaks the degeneracy of the radial modes.

The potential generated by the RF electrodes is much easier to analyze.

With an RF signal V (t) = V0cos(Ωt), the potential generated from the RF

electrodes in the case of the ideal linear Paul trap is

ΦRF =
V0

2

(
1 +

x2 − y2

r0
2

)
cos(Ωt), (3.4)

where r0 is the distance from the electrodes to the trap axis [32]. For our trap,

r0 = 1.183 mm. Charged particles will experience a net potential that is a

sum of the RF and DC potentials.
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3.2 Dynamics of One Trapped Ion

To easily understand the dynamics of a trapped ion, we need to determine

the effective potential a charged particle will experience in the presence of the

potentials given by Eq. 3.3 and Eq. 3.4. To do this, we introduce a correction

factor designed to account for the fact that our linear Paul trap is not ideal.

We subsequently recast the potentials experienced by a trapped particle as

pseudopotentials where necessary. A pseudopotential is an approximation of a

time-varying potential as a time-independent (averaged) potential. Following

this approximation, we can break up the potentials experienced by a trapped

ion into two parts: a static potential (the pseudopotential) and the time-

varying potential which causes small-scale dynamics called micromotion. The

purpose of this approximation is to easily identify the resonant frequencies of

the ion’s motion in the trap.

3.2.1 Axial Motion in a Non-Ideal Trap

Since the DC potential is already time-independent, we do not need to approx-

imate it. Indeed, for the case of a single trapped ion, we can read the axial

trap resonance directly from Eq. 3.3 since this is in the form of a harmonic

oscillator, and the RF potential (Eq. 3.4) has no z-dependence. However,

Eq. 3.3 does not accurately describe our trap. Unlike the ideal linear Paul

trap, our trap is not perfectly symmetric. Additionally, there may be capaci-

tances between the electrodes which alter the potential. We need to make an

adjustment to account for these conditions in the form of a geometric constant

38



factor κ which attenuates the potential experienced by a particle. That is,

0 < κ < 1 and a particle of mass m and charge q experiences an axial electric

potential near the center of the trap of

Φz =
κU0

z0
2

[
z2−

(
σx2 + (1− σ)y2

)]
=
m

2q
ωz

2

[
z2−

(
σx2 + (1− σ)y2

)]
, (3.5)

where ωz is the angular frequency of oscillations in the axial direction and can

be expressed in terms of trap parameters and the trapped particle’s charge-

to-mass ratio:

ωz =

√
2κqU0

mz0
2
. (3.6)

I will discuss the theory behind κ in more detail in Section 3.4. For the

moment, it suffices to state the axial potential and angular frequency of oscil-

lations.

3.2.2 The Pseudopotential Approximation of Radial Mo-

tion

Unlike the DC potential, the RF potential needs to be approximated as a

pseudopotential due to the time-dependence of Eq. 3.4. To make this ap-

proximation, we assume that the frequency of oscillation Ω of the RF signal

is sufficiently high to confine ion motion near the trap axis. Drewsen and

Brøner discuss this condition in Ref. [33]. The result is that Eq. 3.4 can be

approximated by the pseudopotential

Φr =
m

2q
ωr

2(x2 + y2) (3.7)

39



for a particle of mass m and charge q in the trap. In the above equation,

written in the form of a harmonic oscillator, ωr is the radial angular frequency

of oscillations experienced by an ion in the trap due to the RF potential,

related to the other trapping parameters by

ωr =
qV0√

2mΩr0
2
. (3.8)

Since both ΦDC and Φr contain a radial component, Eq. 3.8 does not fully

describe the radial motion of the trapped particle. By the principle of su-

perposition, the radial pseudopotential experienced by a trapped particle is

altered by the presence of the DC electrodes: It is enhanced in the axis along

which the DC electrodes are situated (the x-axis) and reduced in the radial

axis orthogonal to them (the y-axis). Additionally, ΦDC also splits the radial

frequency of oscillations into two distinct frequencies, one corresponding to

motion along the x-axis and the other to motion along the y-axis. The total

radial potentials of such a system can be written

Φx =
m

2q

(
ω2

r − σωz2

)
x2 (3.9)

and

Φy =
m

2q

(
ω2

r − (1− σ)ωz
2

)
y2, (3.10)

which correspond to angular frequencies of oscillations

ωx =
√
ωr

2 − σωz2 (3.11)
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and

ωy =
√
ωr

2 − (1− σ)ωz2. (3.12)

Since the linear Paul trap generates a potential that is well approximated as

harmonic, while one ion is confined to the linear Paul trap, Eq. 3.6, Eq. 3.11,

and Eq. 3.12 characterize the motion of the ion. To predict the motion of

trapped ions, we first must determine our trap’s values of κ and σ. The re-

mainder of this chapter is dedicated to constructing and analyzing experiments

meant to determine these values.

3.3 Experimental Design

Having established the theoretical framework governing the motion of a single

trapped ion in both the axial and radial dimensions, I will walk through the

experiment I performed to discover the frequency of oscillations exhibited by

a trapped ion using detections of resonances. This section describes the ex-

perimental setup used to discover the ion’s motion in the trap, the results of

which will be discussed throughout the remainder of the chapter.

A trapped ion will move at the real frequencies corresponding to the angular

frequencies of oscillations given by Eq. 3.6, Eq. 3.11, and Eq. 3.12. Such an

ion can be driven to move with very large amplitudes if we apply a drive at

a frequency f corresponding to one of these angular frequencies (f = ω/(2π))

to the ion’s potential well. To do this, we add a low-voltage sine wave signal

to the fourth DC electrode of the Paul trap. The peak-to-peak voltage of this

signal should be lower than the trapping voltage on this electrode in order to
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keep the ions in the trap. This modulates the trap potential minutely, causing

the ion to move. As the signal’s frequency approaches a resonant frequency,

the ions will oscillate at large amplitudes. This reduces the photon emission

from the ions primarily because the motion induces a doppler shift in the ion

resonance, stopping the laser from driving electronic transitions.

When we first set up this experiment, we observed the ions by detecting

photons emitted by the ions in the path of the detuned laser beam with a

camera. We used a function generator to produce the oscillatory signal on

the fourth electrode and drive the ions. In this case, the resonances were

detected by the ion blurring and, at resonance, disappearing as its photon

emission rate sharply decreased, as shown in Fig. 3.2. We observed the desired

behavior using this method, and the resonances were seen in the range of

100 kHz − 800 kHz; however, this method was slow, imprecise, and difficult

to analyze statistically. For instance, it was difficult to determine the relative

depths of these resonances, which indicates how easy they are to drive (and,

due to the asymmetry of our trap, indicates which resonance corresponds to

which axis).

We solved these issues by automating the process. Instead of viewing the

ions on a camera, we directed the scattered light to a photomultiplier tube

(PMT) to use a photon count as a quantitative measure of the ion’s visibility.

This change substantially improves the rate at which we can collect data,

since, to detect the ions, the camera requires an exposure time on the order of

100 ms and the PMT requires an exposure time on the order of 1 µs. Instead

of tuning the driving frequency by hand, we use a Direct Digital Synthesizer
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(a)

(b)

Figure 3.2: Photograph of a Beryllium Ion in a Modulating Trap Potential.
(a) A single trapped beryllium ion with the trap potential modulation turned
off and trapping voltages corresponding to U0 = 3 V. (b) The same ion in the
presence of a driving signal. From top to bottom, the modulation frequency
is increased in 10 kHz steps, from 280 kHz to 330 kHz. Notice the elongation
of the ion as the modulation frequency approaches the resonant frequency
(329 kHz). For scale, the crystallized ion in (a) is approximately 10 µm wide.

board (DDS), Analog Devices model AD9910, to output an analog signal given

a digital one. The main advantage of this approach is that we can design a

program to send the signal and collect our data automatically, essentially using

the DDS board as a programmable function generator.

The DDS has a signal output limited by attenuating circuit elements fol-

lowing it (namely, a transformer and a variable attenuator). These elements

prevent the system from outputting substantial signals of frequencies lower

than 10 MHz. I initially used a frequency mixer in combination with a low-
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Figure 3.3: Hacked DDS Board Circuit Diagram. The markings show the
changes made to the DDS board to bypass its frequency limitations.

pass filter to overcome this limitation, but the resulting signal was not a perfect

sine wave. After checking the results of investigations with this setup against

our earlier setup, we determined that this signal was likely driving harmon-

ics of the trap resonances. To get unambiguous data, we scrapped this setup

entirely and instead bypass the bandwidth-limiting components in the DDS

board directly. Brian Crepeau made the adjustments to the DDS board to

produce the desired output. These are shown in Fig. 3.3.

I used our lab’s Quantum Logic Ion Control (QLIC) program to read and

execute a script containing our experimental procedure. The front-end of
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QLIC is in LabView, and its experiments are written in python scripts. It can

identify variables to scan and record average photon counts from the PMT at

each step of the scan. It can be used to send pulses to the AOMs, allowing us to

control which beam (resonant, detuned, or repump; see Sect. 1.3.3) enters the

ion trap at a given time. This particular experiment uses a pulse of the detuned

beam to cool the ions from room temperature, then switches to a brief pulse

of the resonant beam for Doppler cooling. Next, we trigger the DDS which

sends the driving signal to the ions. We collect the data immediately after the

pulse ends, while the resonant beam is on the ions. The data we collect at a

given frequency is averaged for analysis and recorded as a histogram.

In our typical operating sequence, QLIC scanned frequencies of 100 kHz

to 800 kHz in increments of 1 kHz steps, each of which was run for 100 exper-

iments with detection windows of 0.5 ms each, which is large enough to yield

average counts of tens of photons. Our default driving amplitude was between

400 mVpp and 600 mVpp at the source (it passes through a 10 kHz RC low-pass

filter en route to the electrode). The modulation amplitude has some minor

frequency-dependence, which is shown in Appendix C. These amplitudes were

necessary for driving the radial modes, but such scans often sacrificed precision

on the axial mode frequencies. In these cases, we typically repeated the scan

with a finer step size and a lower driving frequency to achieve better resolution.

In particular, we occasionally brought the driving amplitude to approximately

200 mVpp to pinpoint the location of the axial resonant frequency. Once we

found a resonance, we typically scanned over a small range (< 100 kHz) at a

100− 500 Hz step size to clearly display the resonance.
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3.4 The Geometric Constant

Over the past few years, our lab has refined its techniques for measuring κ, the

trapping parameter dependent on trap geometry which attenuates the axial

potential and was introduced in Sect. 3.2.1. Shenglan Qiao discusses the theory

behind κ in her thesis, but did not complete the discussion due to ambiguity in

the literature [30]. Last year, Edward Kleiner began our lab’s measurements

of κ. He measured the ions’ relative positions from photographs, and made

two different measurements of κ: 0.1345 and 0.1136 [8]. Unfortunately, it is

not clear whether these measurements were in statistical agreement, and the

method of measurement was imprecise. I hope to unify these past investiga-

tions by making a more statistically rigorous measurement of κ.

I determine the value of κ for our trap by measuring the observed resonant

frequencies of a single trapped ion at different axial trapping voltages, then

fitting the data to Eq. 3.6. In order to accomplish this, I change the voltages

V = (V1, V2, V3, V4, V5) to alter the shape of the potential well. We kept

V3 = 0 V and took two sets of data. First, we set V1 = V5 = 10 V and found

the resonances for various V2 = V4 = V . In the next set, we found resonances

for various V1 = V2 = V4 = V5 = V . We can relate this to the parameter U0 in

Eq. 3.6 with the identity U0 = V in the latter case, but since our trap contains

five DC electrodes as opposed to the three considered in the derivation of

Eq. 3.6 by Raizen et al. in Ref. [32], it would be inaccurate to claim the same

identity in the former case. As such, we will do our analysis on the case where

we alter all voltages on the non-central electrode segments identically. The

case where the end segments are set to 10 V will give us an indication of the

46



inaccuracy of the aforementioned identity.

This data, taken early in my year-long investigation, was collected by the

first method outlined in Sect. 3.3. Specifically, I observed the resonances as

maximally blurred ions on an image of the center of the trap captured by

a camera, and the driving frequency was sent to the electrode by a func-

tion generator outputting a sine wave. Later, I collected this data using the

PMT method, and determined that these measurements were accurate (corre-

sponding data points are within uncertainty of each other). The result of this

investigation is shown in Fig. 3.4.

Figure 3.4: Potential Well Scaling of the Axial Resonance. The dashed line
represents a square root fit of the orange data points. From this fit, we deter-
mine κ = 0.147± 0.002.
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While we analyzed the set of data for which we varied all four outer elec-

trode voltages identically, this graph clearly shows that there is little difference

between this and the case in which V1 = V5 = 10 V, especially at higher trap-

ping voltages. At lower trapping voltages, the axial resonant frequency was

slightly higher when the outer electrodes were set to 10 V. Our fitting equa-

tion yielded 2κe/(2π)2mz0
2 = 3.54(6)× 1010 kg−1m−2C, with the uncertainty

determined by the standard error in the fitting parameter. The characteristic

trap length z0 is typically taken to be half the length of the central electrode,

which is 1.50 mm in our case. With this, we find κ = 0.147± 0.002.

This value is higher than those measured by Kleiner, but with the preci-

sion on his measurements unknown, it is unclear whether this is statistically

different. Regardless, our measurement is based on a best fit curve of many

data samples and is, therefore, more statistically rigorous. Also, due to myriad

improvements made to the laser system over the past year, my determination

of κ was not impeded by many of the issues that Kleiner faced.

3.5 The Radial Asymmetric Ratio

To complete our parameterization of Qiao’s Paul trap, we still need to de-

termine the radial asymmetric ratio σ for our trap. We accomplish this by

observing the locations of the three resonances of a single trapped 9Be+ ion in

the trap. This ratio can determined by rearranging Eq. 3.11 and Eq. 3.12 to
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solve for ωr
2. Setting these equations equal to each other, we get

σ =
1

2

(
ωy

2 − ωx2

ωz2
+ 1

)
. (3.13)

Likewise, by rearranging these equations to solve for σ, we can determine ωr:

ωr
2 =

1

2

(
ωx

2 + ωy
2 + ωz

2
)
. (3.14)

While keeping the RF frequency fixed at Ω/(2π) = 34.99 MHz, we observed

the resonances at axial trapping potentials ranging from U0 = 2 V to U0 = 6 V

with a step size of 1 V. A typical scan made to find the radial modes (taken

at U0 = 4 V) is shown in Fig. 3.5.

As this figure indicates, motion along the y-axis is consistently more diffi-

cult to drive than motion along the x-axis for our trap. This is because our

potential modulation occurs on a DC electrode, which is along the x-axis, an-

gled 45 degrees relative to the z-axis, and perpendicular to the y-axis. Thus,

x- and z-axis modes can be driven with lower amplitude signals than the y-axis

mode. Occasionally, we needed to drive at a higher DDS amplitude to clearly

distinguish ωy from the noise inherent in counting photons.

The resulting σ values retrieved from scans at each U0 are shown in Fig. 3.6.

Although we assumed that σ is a constant, it clearly exhibits axial voltage

dependence.1 This does not affect any of our previous calculations, and a po-

tential parameterized with a voltage-dependent asymmetric ratio σ(U0) still

1If we do decide to treat σ as a constant, this data yields σ = 0.84(19). Clearly, this
is not an accurate interpretation of the data shown in Fig. 3.6, but it gives us a quick and
easy way of predicting the approximate locations of 9Be+ radial resonances.
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Figure 3.5: Trap Modulation Scan at U0 = 4 V. Data was taken in steps of
500 Hz. This image is indicative of the typical data retrieved by a scan over
driving frequencies. Radial modes are identified at ωx/(2π) = 644 kHz and
ωy/(2π) = 707 kHz. The axial resonance is not shown; since it is very easy to
drive, we searched for it separately with a lower driving amplitude.

satisfies Laplace’s equation. However, a parameter that depends on an oper-

ating value such as U0 does not have the same predictive power as a constant

parameter.

Given the unexpected behavior of the radial asymmetric ratio, one might

question the validity of our experiments. For instance, perhaps we misidenti-

fied some of the resonances. Fortunately, we can test whether these resonances

were correctly identified by checking the value of ωr retrieved for each set of

resonances by using Eq. 3.14. Since we operated at the same RF amplitude and

frequency throughout these experiments, ωr should be constant. Indeed, we see
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Figure 3.6: Experimentally Determined Values of σ. As the axial trapping
voltage increases, our trap gets increasingly symmetric, given by the case where
σ = 0.5. The dashed line is a fitting equation of the form σ = [A/(U0+B)]+0.5,
where A = 1.01 V and B = −0.448 V were determined from the fit.

only a narrow range of values for ωr, with variations independent of axial trap-

ping voltages. Taking the mean of these values, we find ωr/(2π) = 725(2) kHz.

The small standard deviation of this value gives us confidence in our findings.

No radial parameter is explicitly mentioned in the literature on Paul traps [6,

31, 32, 34]. Instead, these articles describe how closely the traps they use ad-

here to the case of the radially symmetric trap. The voltage dependence of σ

could explain its absence.

While σ(U0) is not very useful as a trap parameter, it can still yield in-

teresting information about our Paul trap based on its voltage dependence.

I modeled the behavior of the parameter with the fitting equation σ(U0) =
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[A/(U0 + B)] + 0.5, shown by the dashed line in Fig. 3.6 (with the fitting pa-

rameters A = 1.01 V and B = −0.448 V). This may not be the best fitting

equation for the data, but it highlights one interesting trend: As the axial

trapping voltage increases, σ(U0) approaches 0.5, which is the condition for a

symmetric trap. In other words, the radial potential experienced by the ion

gets increasingly symmetric in a stronger trap.

One explanation for this behavior could be the buildup of unequal charge

(voltage) on opposite DC electrodes. At low trapping voltages, such an in-

equality could constitute a large fraction of the trapping voltage, which would

push a trapped ion away from the radial center of the trap and toward one

of the DC electrodes. At higher voltages, this difference would be fractionally

smaller, so a trapped ion would reach a radial equilibrium closer to the trap’s

center. Viewing the scattered light from trapped ions on a camera, we have

observed some voltage-dependence of the ions’ position. Our camera is posi-

tioned directly between one set of DC and RF electrodes (at a 45 degree angle

to the x- and y-axes). When we make large changes to the axial trapping volt-

ages U0 (more than 2 or 3 Volts), we typically need to readjust the camera’s

focus to center our image on the trapped ions again. However, this is just a

cursory and anecdotal explanation for the observed behavior of σ(U0). Further

investigation is needed to directly determine the cause of this behavior.

Having described σ(U0), we have concluded the parameterization of the

Paul trap used in our experiments. Table 3.1 summarizes the results of these

investigations. It displays the parameters used to describe the trapping po-

tentials generated by the electrodes and lists typical operating values for other
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Parameter Value Description

κ 0.147± 0.002 geometric constant

σ(U0) 1.01V
U0−0.448V

+ 0.5 radial asymmetric ratio

r0 1.183 mm distance from trap axis to electrodes

z0 1.5 mm characteristic trap length

U0* 3.0 V − 10.0 V operating DC potential

V0* 185 V operating RF amplitude

Table 3.1: Summary of Trap Parameters and Typical Operating Values. This
table includes all of the important input parameters and values used to describe
our trap. The parameters marked by asterisks are not set by the particular
setup of our ion trap, and can be directly adjusted. For these parameters, the
values given are typical operating values.

important and easily adjustable variables. With this information, we are

equipped for spectroscopic experiments on multiple trapped ions.

3.6 Axial Dynamics with N Trapped Ions

Up to this point, we have considered the dynamics of a system composed

of one trapped ion in our Paul trap in order to investigate the parameters

appearing in the trapping potentials. Obviously, this is insufficient preparation

for understanding how two ions behave when trapped together, the most basic

condition for performing QLS experiments. Now I will shift my attention

to the case in which multiple ions are co-trapped. When multiple ions are
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trapped in a typical trapping potential, they spread out as a chain in the axial

dimension. This is the dimension which is easiest to probe as well as that

which contains the most useful information, so I will restrict this discussion to

the axial motion of the ions, assuming that the ions’ radial motion is small in

comparison to their axial motion.

The ions in our trap are subject to two axial forces. First, they experience

a trapping potential with a shape determined by the DC voltages of the Paul

trap electrodes. Trapped at a sufficient distance from the electrodes, this

potential is well approximated as harmonic in the center of the trap, where

the trapped ions are located (ion motion tends to be on the scale of µm while

the length from the ions to the edge of the center electrode is 1.5 mm). This

is identical to the potential experienced by a single trapped ion. Second, each

ion is repelled by the other ions in the trap via the Coulomb force. Thus, the

total potential energy of the system with N trapped ions is

U =
N∑
i=1

1

2
u0z

2
i +

N∑
j,i=1
j 6=i

e2

4πε0
∣∣zi − zj∣∣ , (3.15)

where u0 is a trapping constant, zi (zj) is the axial position of the ith (jth) ion

in the trap, e is the charge of an electron (the total charge of one ion), and

ε0 is the permittivity of free space. Similarly, the kinetic energy of the system

(in the Newtonian limit) can be written

T =
N∑
i=1

1

2
miżi

2, (3.16)
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in which mi is the mass of the ith ion in the trap. It is important to keep in

mind that Eq. 3.15 and Eq. 3.16 only describe the axial energies of the system.

We will use the general procedure followed by [34, 35], casting the energies

in terms of qi, the displacement of the ith ion from its equilibrium position:

We will define the set of values qi as the solutions to the equations ∂
∂zi

∣∣∣
z0i

= 0,

where z0
i is the classical equilibrium position of the ith ion, which in turn

allows us to define the mass-weighted coordinates qi
′ =
√
miqi. Using these

coordinates, we can express the kinetic energy in a form that is independent of

mass. Since the ions are confined to small oscillations on the scale of the trap,

we can use a Taylor series expansion about the equilibrium positions z0
i to

approximate our energy equations (Eq. 3.15 and Eq. 3.16). Neglecting terms

of higher order than the leading (second-order) term, the potential is

U =
1

2

∑
i,j

Kijqi
′qj
′,

Kij =
1

√
mimj

∂2U

∂qi∂qj

∣∣∣
z0i

,

(3.17)

and the Lagrangian of the system can thus be written:

L =
1

2

∑
i

q̇i′
2 − 1

2

∑
i,j

Kijqi
′qj
′. (3.18)

We use the Lagrangian to retrieve the axial equations of motion for this

system, which yield a linear system of equations with the solution qi
′ = q0

i
′
eiωt.

This system of equations can be diagonalized to give the normal modes of the
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ions in the trap: The normal modes α are given by

∑
j

Kijβ
α
j
′ = λαβ

α
i
′, (3.19)

where λα is the eigenvalue corresponding to the eigenvector βα. Since Kij

is a hermitian matrix, these eigenvalues are all real, and are related to the

frequency of the normal mode oscillations Ωα by the relation λα = Ωα
2 when

λα > 0 for any α. Additionally, the normal mode coordinate qα
′ corresponding

to the normal mode α is

qα
′ =
∑
i

βαi
′qi
′. (3.20)

These coordinates can be quantized in the usual manner, using raising and

lowering operators [35], but my discussion will be focused purely on classical

phenomena.

3.6.1 Special Cases

In the case of a single trapped ion, only the first term in Eq. 3.15 contributes to

the system’s potential energy and our system is a simple harmonic oscillator.

In this case, u0 = mΩ0
2, where Ω0 is the frequency of oscillation experienced

by the ion in the trap. The experimentally determined value of Ω0 allows us

to understand the parameters of the two-ion system. Specifically, it allows us

to both predict the axial resonances for our specific trap and express these

resonances relative to the single-ion resonance.

Our experiments are primarily concerned with the trap dynamics resulting

from two trapped ions, the staple setup of QLS. Eventually, we hope to trap
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an oxygen molecular ion alongside a beryllium ion and use our understanding

of beryllium’s motion to prepare specific states in the oxygen molecule, but

even as we prepare for this step, we can test our system and confirm our the-

ories by trapping two beryllium ions in the trap and observing their resonant

frequencies. Furthermore, we often notice one of the beryllium ions disappear-

ing from our view, even as the motion of other visible ions indicate that the

now-dark ion is still present, an indication that this ion may have changed

mass and therefore is no longer resonant with our laser. Figure 3.7 displays a

typical photograph of this scenario. We hypothesize that these dark ions are

the result of 9Be+ ions bonding with hydrogen in the trap to form beryllium

hydride (BeH+), which accounts for the changes we observe. In order to con-

firm the identity of these dark trapped ions, we also need to understand the

dynamics of the two-ion case.

Solving Eq. 3.19 for the case of two identical ions yields two normal modes,

one in which the two ions oscillate with equal amplitudes and in phase (the

center of mass mode), the other in which they oscillate with equal amplitudes

but are exactly out of phase (the relative mode). These frequencies differ by

a factor of
√

3.

The axial modes of a system containing two ions of different masses can

also be obtained from Eq. 3.19. Expressed in terms of the relative masses of

the two ions and the single ion resonant frequency, the axial modes are [35]

Ω±
2 = Ω0

2

(
1 +

1

µ
±
√

1 +
1

µ2
− 1

µ

)
, (3.21)
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Figure 3.7: Photograph of an Ion Chain with 9Be+ and Dark Ions. We pub-
lished this image in Ref. [11]. It shows an ion chain with uneven spacing
between the bright beryllium ions. All trapped ions have the same net charge,
so they should appear evenly spaced in the presence of the trapping poten-
tial. The spacing of the bright ions above indicates the presence of additional
trapped ions of a different mass (and thus resonance) in the chain. We think
these are BeH+ molecular ions created by 9Be+ bonding with background hy-
drogen gas in the trap.

where µ is the mass ratio of the two trapped ions of masses M and m such

that M = µm and µ ≥ 1. These modes, relative to the single ion resonant

frequency Ω0, are shown in Fig. 3.8. Notice that when µ = 1, the two ions

have equal masses and Ω− is the center of mass mode, which is greater than

the relative mode Ω+ by a factor of
√

3.

When µ 6= 1, the two normal modes still result in the ions moving either

perfectly in or out of phase, but the modes do not exactly correspond to the

center of mass and relative modes since the amplitudes are proportional to

1/
√
m [35]. Our three cases of interest are marked in Fig. 3.8: when two 9Be+

ions are trapped (marked by the vertical axis of the graph), and when one

9Be+ ion is trapped with either BeH+ or 16O2
+ (cases marked by the vertical
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Figure 3.8: Two-ion center of mass and relative mode frequencies. These
frequencies are dependent on the mass ratio µ of the two trapped ions. Here
they displayed relative to the single ion resonant frequency Ω0. From left to
right, the dashed vertical lines represent the mass ratios for the 9Be+ and
BeH+ system and for the 9Be+ and 16O2

+ system respectively. The system
comprised of two 9Be+ ions is represented by the µ = 1 case, along the vertical
axis.

dashed lines).

We test the validity of this framework by searching for the Ω− and Ω+

resonances of the 9Be+−9Be+ system. After touching up the coupling of our

RF signal and confirming the presence of two 9Be+ atoms in the trap with

the camera, we scanned in 500 Hz steps and found one axial resonance at

239± 3 kHz. We increased the drive amplitude, which revealed another axial

resonance at 425±2 kHz. Both of these resonances were broad and asymmetric

in the scans we took, so these values should be treated only as preliminary

measurements.
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These modes are separated by a ratio of 1.78. This is approximately the

ratio of
√

3 by which we expect the center of mass and relative modes to

be separated and thus is consistent with the theory described above. The

deviation from the expected value of the ratio indicates that the precision to

which our system can identify resonances is limited to a few kHz.

3.7 Two-Ion Resonances

Equation 3.21 allows us to identify co-trapped ions based on the resonances of

the two-ion system. This will help us accomplish two important goals. Most

importantly, when we load 16O2
+ into the trap, we will be able to distinguish

it from other dark ions based on the frequencies of the system’s axial modes.

Secondly, it allows us to confirm the identity of the dark ions that have been

appearing in our trap.

The phenomenon of a 9Be+ ion interacting with a H2 molecule to create

BeH+ is a well-documented occurrence in trapping experiments of this kind [6].

While it is important to experimentally confirm the identity of the dark ions

co-trapped with 9Be+ in our trap, the purpose of measuring the resonances

of the 9Be+−BeH+ system is to determine the precision with which we can

determine the mass of trapped ions. The normal modes of this system should

occur at only slightly lower frequencies than those of the 9Be+−9Be+ system,

since the difference in mass between these two systems is 1 amu. If we can suc-

cessfully distinguish this case from the 9Be+−9Be+ case, we can conclude that

our system is capable of identifying co-trapped molecules with a precision de-
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termined by the difference in resonant frequencies between these two systems.2

When the system is ready to be loaded with 16O2
+, we can use this method to

confidently identify the presence of co-trapped oxygen and distinguish it from

BeH+.

If we measure an axial resonance of the single trapped 9Be+ system at Ω0

for a particular trapping potential, we can use Eq. 3.21 to determine the ax-

ial modes of the systems of interest to us. This experiment should be feasible

with our current setup, but we were unable to collect convincing data as of the

writing of this document. In lieu of this data, I will predict the frequency pre-

cision which we would need our setup to achieve in order to identify co-trapped

BeH+ or 16O2
+. For purposes of this discussion, I assume that Ω0 = 300 kHz

with the understanding that this resonance can be tweaked by adjusting U0.

The mass ratio of BeH+ to 9Be+ is µ = 1.11. Therefore, if Ω0 = 300 kHz,

the 9Be+−BeH+ system should have axial modes at Ω− = 291 kHz and Ω+ =

507 kHz. To distinguish both of these modes from those of the 9Be+−9Be+

system, we need a precision of 9 kHz. It should be easier, however, to focus

on the Ω+ modes due to their higher frequency magnitudes. If we restrict our

focus to these modes, a precision of 13 kHz should be sufficient to distinguish

these systems. This precision is consistently achieved by our system.

Likewise, we hope to be able to distinguish the 9Be+−16O2
+ system (µ =

32/9) from a system with a mass ratio of 33/9 or 34/9, corresponding to a

system with a co-trapped oxygen molecule that contains one of oxygen’s other

2While it is tempting to claim that this experiment confirms that our system can identify
co-trapped molecules with a precision of 1 amu, this is not an accurate statement, since a
difference of 1 amu causes a larger shift in resonances in systems with lower µ. This can be
confirmed with Eq. 3.21.
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stable isotopes (17O or 18O). This will allow us to confidently identify the

isotope of oxygen we have co-trapped. If Ω0 = 300 kHz, the 9Be+−16O2
+

system should have axial modes at Ω− = 187 kHz and Ω+ = 442 kHz. To

distinguish the relative mode of this system from those of similar mass, we need

a precision of approximately 0.6 kHz. Currently, we are unable to distinguish

such fine detail. A few concepts can help us mitigate this technical limitation.

First, we can increase U0 to raise Ω0. If the precision of our measurement

is frequency-independent, then increasing Ω0 lowers the precision necessary

to distinguish these systems. We can also rely on the relative abundance of

particular oxygen isotopes to help identify trapped 16O2
+. Since 16O is by

far the most abundant isotope (with 99.8% abundance), we can assume that

we have this isotope trapped. The most important distinction we need to

make will certainly be possible with the current precision of our experiment:

confirming that the co-trapped dark ion is an oxygen molecule, not a beryllium

hydride molecule.
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Chapter 4

A Path Forward

There is no clear conclusion to my experimental work. I joined this lab in the

middle of an ambitious project, and unfortunately, I will leave it well before

we reach our goal. As much as I would like to claim that our lab’s precision

measurements of the time variation of µ are right around the corner, there is

much to still be done before we can make these measurements. With every

experiment we perform and every question we answer, new questions arise

that merit further investigation. This is not a cause for despair; rather, this

is the truly exciting part of navigating to the forefront of physics research.

It also means there are many paths forward from the work I’ve done this

year. Instead of attempting to enumerate all of these paths and the many

tests on our doorstep, I will focus on those steps which will bring us closer

to implementing the quantum toolbox I have assembled for experiments with

16O2
+.
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4.1 Oxygen Loading and Resonances

Of course, before we can begin experimenting on oxygen, we need a reliable

way to load and ionize oxygen gas (O2). We are currently installing an external

gas manifold that will allow us to leak a controlled amount of oxygen into our

apparatus’ vacuum chamber (in which our Paul trap is located) safely and

without compromising the vacuum. Specifically, we will leak the gas in at a

pressure of approximately 1× 10−10 torr.

If we simply ionize oxygen ions by striking them with high energy photons,

we will generate an ensemble of 16O2
+ in a large assortment of rotational

states. We want to maximally control the quantum states of these molecules

for manipulation and cooling, so we need to control which state these molecules

are in after being ionized. We will accomplish this by first exciting O2 gas

into a Rydberg electronic state (d1Πg) in a process called resonance-enhanced

multiphoton ionization [36, 37]. In a Rydberg state, the electron to be removed

in ionization has a large orbit and, therefore, does not dramatically affect

the quantum state of the nucleus: The quantum state of an O2 molecule

in a Rydberg state closely resembles a state of the 16O2
+ ion. This implies

that ionizing oxygen gas from this state will yield 16O2
+ in a known quantum

state. As discussed in Refs. [4, 36, 37], exciting oxygen to the d1Πg Rydberg

state requires two photons with wavelengths in the range 296.5 − 303.5 nm,

corresponding to a fundamental wavelength of 593−607 nm. Once the neutral

molecule is in this state, we can ionize it with a sufficiently high-energy photon,

such as another photon in the UV. We will use a dye laser to create photons of

the desired wavelength. These lasers use dyes as a source of optical gain, and
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are versatile because a particular dye can be chosen to make the laser function

at a desired wavelength. We have preliminarily identified a combination of

dyes that could yield the desired wavelength.

Once we have implemented these apparatuses, we can begin studying 16O2
+

in the trap. An important step at this point will be to confirm that we can

sympathetically cool these molecules and trap them alongside 9Be+. Hopefully

this step will be straightforward: By simply cooling 9Be+ ions with the detuned

beam, we have performed sympathetic cooling of BeH+ molecules. We expect

to be able to cool 16O2
+ similarly.

The subsequent step, confirming the identity of these cooled ions, will

directly use the theory I discussed in Sect. 3.7. By trapping one 9Be+ atom

alongside one 16O2
+ molecule, we can use the mass-dependence of the system’s

resonant frequencies to confirm that we are, indeed, prepared for quantum logic

spectroscopy.
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Appendix A

Limitations of BiBO in

Second-Harmonic Generation

A.1 The Experiment

In order to prepare the ultraviolet light we use to probe and cool the beryllium

in the ion trap, we need to convert infrared light to blue light via second-

harmonic generation (SHG). This process involves sending the beam through

a nonlinear crystal within a cavity to build power. One of the common crystals

used in such setups is bismuth triborate (BiBO, BiB3O6). BiBO is particularly

useful due to its high nonlinear coefficient which results in a high conversion

efficiency in this process [15], but is prone to optical damage induced by pho-

torefraction at high input powers [38]. We have found little documentation in

the literature of the symptoms of this damage. In particular, the magnitude

and rate of the change in power of the output beam caused by this damage
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are not well-catalogued.

The powers involved in our work induced such damage in the BiBO crystal

over several thousand seconds of exposure. While we discovered that an LBO

crystal was more appropriate for use in our SHG cavity, this provided us with

an opportunity to catalog and describe the effects of the BiBO damage on the

power of the output beam.

A.1.1 Experimental Setup and Data Acquisition

We sent an infrared beam from a diode laser with a wavelength of 940 nm

into our SHG cavity to produce blue light with a wavelength of 470 nm. The

diode laser input (controlled by a tapered amplifier and optical fiber coupling)

could span a range of powers, capped at approximately 150 mW in the blue.

While we witnessed the BiBO damage using input powers as low as 40 mW,

we decided to examine the trends resulting from powers between 100 mW and

150 mW to accelerate the decay process.

In order to have a continuous measurement of the output power, we di-

verted the two beams of blue light deflected out of the SHG cavity, the output

and the light reflected off of the BiBO crystal at Brewster’s angle, to circuits

via photodiodes. These circuits are designed to output a voltage proportional

to the input power. By knowing the initial powers of the output and the

Brewster-reflected beam, we can determine the circuits’ proportionality con-

stants and, thus, convert the measured voltages to powers.

We collected this voltage data with a LabVIEW program which appends

voltage samples at a given sample rate to a list. It averages the voltage data
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in the list to achieve a mean and an RMS value for that time interval. It

appends these data points to a spreadsheet and saves the file after each interval

elapses. For this experiment, we set the number of samples to 100 and the

sample rate to 1000 per second. Thus, our average voltage data was taken in

100 millisecond intervals.

To acquire data at the instant the BiBO is exposed to damaging levels of

light, we first reduced the input laser power to levels well below the damage

threshold of the BiBO crystal using a neutral-density (ND) filter. This thresh-

old is difficult to quantify due to its dependence on other systematic factors

and acoustic noise [15], but it was sufficiently low that no attenuation of blue

power could be seen on timescales of hours in our setup. Next, we translated

the crystal position to place the beam on an undamaged area on the BiBO

crystal. We began our data acquisition program at this point, then immedi-

ately removed the ND filter to instantaneously increase the power. Our graphs

all show a dramatic increase in output power when the ND filter was removed,

so we can safely omit earlier points from our analysis and consider the moment

of the filter’s removal as the origin time. We typically acquired several hours

worth of data, until significant changes in behavior stopped occurring.

A.2 Features of Output Blue Power Decay

We took a total of eight sets of data, aligning the laser to intersect with an un-

damaged section of the BiBO crystal between each measurement as described

above. Fig. A.1 shows one of the data sets which clearly illustrates the general
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Figure A.1: Symptoms of Photorefractive Damage in BiBO. This graph dis-
plays the total blue power generated in the SHG cavity using a BiBO crystal as
the crystal is exposed to high-power infrared light over time. Notice the early
exponential decay stage followed by the regime of rapid oscillations beginning
after approximately 8,000 seconds of exposure.

trends we noticed in most samples. Overall, the decay can be categorized as

a combination of exponential decay and oscillations in power. At different

points in the decay process, one or the other of these features dominates the

behavior of the output power.

When high-power light is incident on an undamaged part of the BiBO crys-

tal, the power decay is dominated by exponential decay. Most of the power’s

reduction occurs in this regime, with attenuations of 20% to 40% occurring on

timescales of 1000s of seconds of exposure. While oscillations in power occur

in this regime, their amplitudes are small relative to the overall power, and
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Figure A.2: Symptoms of BiBO Damage in the Decay-Dominated Regime. In
the first few thousand seconds of BiBO exposure to high infrared powers, pho-
torefractive damage causes exponential decay in the power of output blue light.
The dashed line shows a fit of the data to an exponential curve. Oscillations
in this regime are small and have long periods.

their periods are on the order of 100 seconds. Fig. A.2 shows the subset of

the data in Fig. A.1 that comprises the decay-dominated regime, where I have

fit the data to an exponential curve. While it does not substantially change

the features of the regime, it is worth noting that the output power experi-

ences a small increase following a lapse in our signal (typically from the laser

unlocking or from acoustic noise shifting the laser’s position on the crystal).

This behavior can be seen in Fig. A.2 at approximate exposure times of 2,500

seconds, 4,100 seconds, and 6,200 seconds.

In all of our data sets, we witness a transition to the oscillation-dominated
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Figure A.3: Symptoms of BiBO Damage in the Oscillation-Dominated Regime.
Photorefractive damage caused by exposure of BiBO to high powers of infrared
light eventually induce large-amplitude oscillations in output blue power. Ex-
ponential decay still occurs, but is not significant in this regime.

regime after a few thousand seconds (in most of our experiments, this occurs

after approximately 6,000 seconds of exposure). At this point, the exponential

decay that has dominated the output signal has almost reached its asymp-

tote, but the small-scale oscillations in power suddenly become much more

pronounced. The periods of these oscillations are markedly smaller than those

of the decay-dominated regime, on the order of tens of seconds, and the mag-

nitude of oscillations constitutes a significant fraction of the overall power

(≥ 40%). These fast oscillations also exhibit an unusual geometry. The power

decreases relatively gradually until it reaches a threshold lower power, at which

point it quickly returns to the maximum amplitude. The threshold lower power
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is typically consistent over many oscillations, rather than changing after a few

cycles. The local peaks of these oscillations still follow the exponential decay

pattern of the decay-dominated regime. A local region exhibiting this behavior

is shown in Fig. A.3.

Due to the differences between each data set we took, it is difficult to say

anything qualitative, let alone quantitative, about the output power decay pro-

cess beyond the aforementioned properties of the decay. Throughout the data

acquisition process, our laser occasionally dropped out, and as we translated

the BiBO crystal to expose a new area to damage, we had no definitive means

of determining whether this new location on the crystal was, as we assumed,

previously undamaged.

Because a reliable data set requires the input laser to remain stable for

hours, much of our data is affected by occasional power dropouts. It is un-

clear what effect these dropouts have on the overall decay process. From

Fig. A.1, it appears that the laser dropouts have little effect on the overall

behavior of the system, but many of our data sets show that the laser signal

dropped out slightly before the transition from the decay-dominated regime to

the oscillation-dominated regime, indicating that this sudden change in power

triggered the beginning of the oscillation-dominated regime. Similarly, our

laser would occasionally drop out during the oscillation-dominated regime,

and when the signal returned, the power trend sometimes returned to the

decay-dominated regime. The most likely cause for these changes is that when

the laser light returned, it was slightly misaligned and therefore incident on a

less damaged area of BiBO.
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Further investigation into the symptoms of photorefractive damage in BiBO

is beyond the scope of this work. However, I hope that my proposed model of

two distinct regimes of decay and the general trends I describe here can provide

information for a group studying photorefractive damage in more detail.
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Appendix B

Constants for Molecules with

Hypothetical Sensitivity to µ

Variation

Detailed in Table B.1 are homonuclear diatomic molecules that fit criteria

which should make them sensitive to variation in the proton-to-electron mass

ratio µ. As discussed in Sect. 2.3, these molecules were chosen on the basis

of having deep potential wells, a different multiplicity state which overlaps

with the ground state, and closely-spaced vibrational energy levels (a result of

low constants ωe and ωexe). Relative sensitivity is maximized if a transition

is considered between a state with high sensitivity to µ and a state with low

sensitivity to µ. For instance, a transition between a ground electronic state

vibrational level with an energy of approximately .75De and a higher electronic

state near the ground vibrational level should be maximally sensitive. Thus,
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the seventh column in this table lists Te/De, the fractional distance up the

ground electronic state potential well where the other state’s energy minimum

is located. Considering a transition between nearly degenerate states in this

region should yield a maximum absolute and relative precision in measuring

µ variation.

Molecule State Te ωe ωexe De Te/De

O2
+ |X2Πg〉 0 1 904.7a 16.5054(84)b

|a4Πu〉 32 964a 1 035.69a 10.382(23)c 54 600 .60

N2 |X1Σ+
g 〉 0 2 358.57a 14.324a

|B3Σ−
u 〉 66 272.4a 1 516.88a 12.18a 97 089 .68

Cl2 |X1Σ+
g 〉 0 559.7a 2.67a

|B3Π+
u 〉 17 809a 259.5a 5.3a 29 331 .61

Br2 |X1Σ+
g 〉 0 325.321a 1.0774a

|B3Πu〉 15 902.47a 167.607a 1.6361a 24 558 .65

I2
+ |X2Π3/2,g〉 0 239.0397(55)d 0.64951(87)d

|a4Σ−
u 〉 8 258 128± 2e 0.38± 0.02e 15 478 .53

Table B.1: Molecular Constants for Select Molecules. aRef. [21], bRef. [27],
cRef. [28], dRef. [26], eRef. [25]. All numbers are in units of cm−1, and uncer-
tainties are marked as they were listed in the source. Te = 0 in the ground
states by definition, and De is calculated from the ground state values with
Eq. 2.6. Refs. [21, 24] include data on many homonuclear diatomic molecules
not listed here.
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Appendix C

DDS Board Calibrations

Figure C.1 shows calibrations of the DDS board used to perform axial potential

modulation for the experiments described in Chapter 3. This data was taken

on an oscilloscope with the DDS set to an amplitude of 100% and connected

to a 50 Ω terminator. While the signal attenuates at frequencies < 1 MHz,

its amplitude is sufficient to drive the axial and radial modes of trapped ions

without amplification. To drive axial resonances, we typically operated at an

amplitude of 30%. To drive radial resonances, we typically operated at an

amplitude of 70 − 100%. The typical frequency range of our scans of system

resonances, 100 kHz− 800 kHz, is bounded by the dashed lines in Fig. C.1.
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Figure C.1: DDS Output Voltage at 100% Amplitude. The vertical dashed
lines represent the typical range of our frequency scans.
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