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Abstract

The creation of the Standard Model (SM) brought huge amount of success with
itself for Atomic, Molecular of Optical Physics (AMO). Nonetheless, there still are
failures in SM to explain the nature of Dark Matter/Energy and Gravity, which led to
creating theoretical extensions to SM (named “Physics Beyond the Standard Model”).

Some of these theories predict changes in fundamental constants such as the proton-
to-electron mass ratio µ, denoted µ̇

µ
. Diatomic molecules are sensitive to µ vari-

ation due to the motion of the nuclei, specifically due to molecular vibration and
rotation. Eventually, we will drive a rovibrational transition | O+

2 X2Πg, ν = 0〉 →
| O+

2 X2Πg, ν > 0〉 to look at tightening the bound on µ̇
µ
. We expect this transition

frequency to vary in time if µ̇
µ

is non-zero. However, O+
2 does not fluoresce during

these transitions. So, we will use a destructive method with a laser pulse dissociating

the ions in the final state | O+
2 X2Πg, ν > 0〉. Looking at the fraction of

O+
2

O+ after
disassociation will allow us to measure the transition frequency. A Time-of-Flight
Mass Spectrometer (ToF-MS) is needed to make this measurement. A ToF-MS gives
a constant kinetic energy to ions with equal charge and looks at their arrival times
to differentiate their masses.

In this thesis, I first describe the theory behind rovibrational transitions in diatomic
molecules. I also review the existing spectroscopy literature for our molecule to get a
baseline for improvement for our transition frequency measurements. Then, I present
the design and theory of a Time-of-Flight Mass Spectrometer with flight times insen-
sitive to the initial position of the ions. This apparatus will be used in measuring the
transition frequency of our clock transition with more precision than the current liter-
ature. An Ion Optics lens (Einzel lens, whose theory is also presented) is included in
the design. It spatially focuses ions in the transverse direction without affecting their
kinetic energy. We discuss the simulations of the expected behavior, construction
techniques and construction of the apparatus. We then present data confirming that
the device works as expected. We also demonstrate that the simple theory behind our
ToF-MS is not enough to explain the obtained data when an Einzel lens is included
in the design, as it alters the expected arrival time. The thesis ends with a road map
for the experiment that incorporates our Linear Paul Trap for co-trapping O+

2 with
Be+. Besides helping us investigate physics beyond SM, these transitions in O+

2 also
have the potential to become the next-generation high precision clocks, replacing the
current atomic clocks.
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Chapter 1

Introduction

1.1 What is Time, and What is a Clock:

Before going into our accomplishments in the lab, we should discuss the overarching

theme of this thesis: time. For most of us, it is a concept that we take for granted.

However, what exactly is time? As one delves deeper into this question we realize

that–unlike spatial dimensions–we do not have a concrete description of time. We do

not even have a convincing bijection between our concept of time and the real world.

Let us start trying to formulate an “answer” from the perspective of someone not

interested in physics first, and then from the viewpoint of Atomic Physics.

1.1.1 In General?

For someone trying to catch their private yoga class on time, time is what the clock

points to. Unfortunately, this is a circular argument, because when we ask “What is

a clock?” the response would be “The thing that measures time.” Therefore, perhaps,

time is a proxy we use in daily life for change [1]. Suppose for a moment that we “live”

in a world where nothing changes. For instance, let us think about a photograph.

Do we really need to define a concept of time to explain this photograph [2]? No!
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Therefore, for the general public, time is just something that allows them to keep

track of changes in things. However, how do you keep track of these changes? You

do that by referencing the changes in that object to changes in another object whose

evolution you are familiar with [3, 4]. This is–without any coincidence–what clocks

are!

This was the main task of humans when they started building clocks. One of the

first familiar things that came to their mind–about 6000 years ago–was the Sun! It

seemed to rise and set very regularly. Hence, they “timed” their days according to its

position, which later evolved into Sundials. Then, we realized we can make water drop

from some orifice at a relatively “constant” rate, which gave rise to Water Clocks.

Archaeologists discovered one of its earliest examples in the tomb of Amenhotep I of

Egypt [3].

Therefore, keeping track of time necessitated the existence of a regular–preferably

repetitive–pattern and a way to keep track of this pattern in equal increments such as

the clock-hands [3]. However, what is the concept of time for physicists, then? Surely

it should be related to “change,” but can we pinpoint the underlying meaning?

1.1.2 What may time be for Atomic Physics and Why do

We Measure It?

Perhaps one of the most promising candidates for time in the domain of physics is

entropy, because we know that the entropy of the Universe always increases. There-

fore, time may just be the direction in the Universe where the entropy is monotone

increasing [2, 5]. So, inadvertently, we might have done a simplification or have been

subject to the illusion of our own minds [2, 5]. For instance, Loop Quantum Gravity

tries to explain this phenomena. One of its proponents Dr. Carlo Rovelli says that

2



certain equations of quantum gravity like Wheeler-DeWitt equation can be written

without using any variable dependent on time. Therefore, perhaps, time arises out of

our inability to see the Universe in its entirety [2, 5].

In the end, regardless of its true nature, time is a useful concept in physics and

engineering. For instance, the Synchrophasor measurements for the power systems

we have require a timing precision of 1 µs or more (IEEE C37.118-2011 Standard for

Synchrophasor Measurements for Power Systems) [6]. Furthermore, GPS satellites

have very accurate clocks on-board for the system to function correctly [4, 7, 8].

The system has to correct for the relativistic time dilation that the high-speed of

satellites causes relative to someone on Earth walking, along with correcting for the

gravitational blue-shift [4, 7, 8]. If this correction is not made, the time you see on

your phone would be off after a few minutes and the error in position would increase

at a rate about 10 km
day

) [4, 8]. Hence, it is clear that we would like to get as much

precision as we can get for civilian (and military in the case of the GPS, which is its

initial raison d’être [7]) applications.

Currently, the most precise clocks are Atomic Clocks. As the name suggests, they

use atoms as a clock. The vibrational level spacing h̄ω indicates an intrinsic oscillation

frequency (i.e. dependent on the ω). Therefore, these oscillations can be used in a

clock if a method to count the number of oscillations can be found [4, 9]. The existence

of precise clocks is also useful in fundamental physics. For example, it allows us to

test fundamental laws and look for physics beyond the Standard Model. Certain

extensions to the Standard Model and General Relativity–mostly higher-dimensional

theories like String Theories, Loop Quantum Gravity, Discrete Quantum Gravity–

predict variation of Fundamental Constants [4, 5, 10]. So, detecting a variation in

these constants can give us clues about the origin of Dark Energy. Two of the most

relevant Fundamental Constants for AMO–that are subject to variation–are the fine-
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structure constant α and proton-to-electron mass ratio µ = mp
me

[4, 10]. Looking at

the change of these constants generally requires finding a transition in an atom or a

molecule whose frequency depends on the constant. Then, you measure the frequency

of this transition for a long-time to see how much this frequency changes [4, 10–13].

This is exactly one of the reasons why Atomic Physics needs extremely precise clocks.

They allow us to measure these changes more precisely, and these changes allow us

to investigate the validity of certain extensions of the Standard Model [4, 10].

In the Hanneke lab, we are trying to measure–or at least tighten the bounds on–the

change in µ, denoted µ̇
µ
. To do this we are going to measure the frequency of transition

between two quantum states say |β〉 and |θ〉 in the X2Πg state of O+
2 to see if the

frequency of this transition changes over a long period of time. If it does, then we

have a change in µ since the frequency of vibration depends on nuclear and electron

masses [4, 11–13]. We should now detail how we are going to do the measurement.

1.2 Measurement Method and Process

Our clock transition is |O+
2 X2Πg, ν = 0〉 → |O+

2 X2Πg, ν = γ〉, where γ is any

integer greater than 0. Specifically, our first measurement will use γ = 16 due to

the convenience of the wavelength [4, 11, 12, 14]. To obtain our desired initial state

|O+
2 X2Πg, ν = 0〉, we will cool our oxygen neutral molecule with free-jet expansion

into our vacuum chamber. Next, the gas beam will get ionized by our UV-laser. After

obtaining the right initial state, we will drive a transition to obtain our final state

|O+
2 X2Πg, ν = 16〉 of O+

2 . Our initial goal will be to measure the wavelength of this

transition with more precision compared to current literature [4, 12, 14]. After this,

we are planning to increase the precision of other transitions within the X2Πg state

of O+
2 (Current best known values can be found in Appendix C). Since there is

no fluorescence in these transitions, we will use a destructive method [11, 12]. We
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will fire another laser pulse to disassociate the molecules in the correct final state

(i.e. |O+
2 X2Πg, ν = 16〉). Then, by looking at the proportion of O+ to O+

2 , we will

construct the graph of the transition [11, 12, 14, 15].

To achieve these goals, we had to first grasp the theory behind these molecular

transitions in the context of diatomic molecules (Chapter 2). Then, we learned the

theory behind and built our apparatus, which is a specific type of a Time-of-Flight

Mass Spectrometer (ToF-MS) [16] (Chapter 3). A ToF-MS accelerates charged par-

ticles through the same electric field. This gives them the same kinetic energy if

they have the same charge. Then, these charged particles fly through a tube with

no electric field [16]. Depending on these particles’ masses, they will have different

speeds. Thus, their arrival times to the end of the tube depend on their masses.

Using these arrival times, we will differentiate ions with different masses (i.e. O+ and

O+
2 ) [16]. The electrode configuration of our apparatus is designed to mitigate some

of the leading systematic effects in determining the mass of the detected ions [16].

Subsequently, we had to assemble our apparatus in the lab (Chapter 4). After the

successful construction of our apparatus, we took data on whether our instrument

works as expected (Chapter 5). Having demonstrated the successful operation of the

detection system, we concluded with recommended next steps towards the goal of

measuring µ̇
µ

(Chapter 6).
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Chapter 2

Spectroscopic Calculations and

Review of Prior Experiments

Since the focus of this thesis is to set the path to the precision measurement of

two-photon transitions in the X2Πg state of O+
2 and to lay the path for our goal

of driving the transition |O+
2 X2Πg, v = 0〉 → |O+

2 X2Πg, v = 16〉 [11, 12], we should

first talk about the theory about rovibrational and electronic transitions in homonu-

clear diatomic molecules. After that, we should look at the most precise existing

spectroscopic data for the X2Πg state of O+
2 to know our baseline for improvement.

The final theory involves finding eigenvalues/vectors of the Hamiltonian, which

we did using the software PGOPHER. It is a computer program for calculating

molecular rovibrational-electronic spectra [17–20]. It requires constants for rota-

tional,vibrational and electronic states, then calculates the transition energies. These

constants are embedded in the Hamiltonian. To understand these constants, we will

start with approximations of the Hamiltonian before presenting it fully [17, 19]. All

of the discussion in this chapter follows from [13, 21]. Additional sources used will be

cited explicitly. In [21], the most relevant chapter is Chapter 9, and the most relevant

chapters in [13] are Chapters 3, 4, 5.
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2.1 Theory of Rovibrational Transitions

Note: In all of the discussion below explaining the theory, we discuss transitions

within the same potential (i.e. the same electronic state).

2.1.1 Approximation of the Full Hamiltonian

We will proceed towards the full Hamiltonian with a series of approximations, each

giving us a better approximation than the last one. These approximations will allow

us to understand the constants used in PGOPHER’s calculations. We will start

with the rigid rotor and harmonic oscillator approximations. Then, we will introduce

centrifugal distortion and anharmonicity. Finally, we will have the spin-orbit coupling

and Coriolis effect corrections. After the explanation of the full Hamiltonian, we

discuss some of the specificities of our molecule, X2Πg state of O+
2 (such as the

absence of hyperfine-structure) [4, 11, 12].

Rigid Rotator

The simplest approximation is to think of O+
2 as two point particles connected with

a massless rigid-rod. Remember that classically, the energy of a rigid rotator is given

by E = 1
2
Iω2. Now, using the classical total angular momentum formula of P = Iω,

we can write the total energy as:

E =
P 2

2I
. (2.1)

Here, we follow the notation of ref. [13, 21], which differs from typical undergrad-

uate quantum mechanics notation where P is reserved for linear momentum. It can

be shown that the moment of inertia is given by:

I =
m1m2

m1 +m2

r2, (2.2)
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where m1,m2 are the two masses and r is the internuclear distance. This implies that

the motion can be reduced to the motion of a rotating particle of mass µ, r away

from a fixed origin of rotation with:

µ =
m1m2

m1 +m2

, (2.3)

which is called the reduced mass.

Energy Levels: Therefore, we have to solve the Schrödinger Equation with m = µ

and V = 0 to find the energy levels. So, we have:

−h̄2

2µ
∇2ψ = Eψ, (2.4)

with x2 + y2 + z2 = r2 being constant due to the rigid rotator approximation. The

solution is:

E =
h2J(J + 1)

8π2µr2
=
h2J(J + 1)

8π2I
= BhcJ(J + 1), (2.5)

where J is an integer with J ≥ 0 and B = h
8π2Ic

.

Harmonic Oscillator

The chemical bond between the atoms is not actually rigid. So, we may also

assume that the molecule is a harmonic oscillator. Then, the displacement from the

equilibrium position behaves like a harmonic oscillator to a first approximation. We

can still reduce this motion to the simple harmonic motion of a single point mass.

Remember that in classical harmonic oscillator, we have the vibrational frequency:

fosc =
1

2π

√
k

m
, (2.6)
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where k is the force constant. So, in terms of potential energy, we have:

V =
1

2
kx2 = 2π2mfosc

2x2. (2.7)

If we approximate that the forces each atom feels are proportional to the internuclear

distance (with atoms having m1 and m2), we have the potential energy: [22, 23]

V = 2π2µf 2
osc(r − re)2, (2.8)

where re is the equilibrium distance between the two atoms and r is the inter-atomic

distance (Notice that for the rigid-rotor discussion, we explicitly used r and not re to

keep it more general. In the case where the atoms are re apart, we will simply have

r = re.) Solving the Schrödinger equation, we can see that the vibrational frequency

is given by:

fosc =
1

2π

√
k

µ
. (2.9)

Energy Levels: Now, if the potential energy is indeed given by V = 1
2
kx2, then

using the Schrödinger equation we get:

d2ψ

dx2
+

8π2µ

h2
(E − 1

2
kx2)ψ = 0. (2.10)

The solution to this equation is:

E(ν) =
h

2π

√
k

µ
(ν +

1

2
) = hfosc(ν +

1

2
), (2.11)

where we defined a new vibrational quantum number ν, an integer with ν ≥ 0. As one

can tell easily, the energy levels are equidistant. E(0) = 1
2
hfosc is called the zero-point
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energy. We can define –what is called term values–G like so:

G(ν) =
E(ν)

hc
=
fosc
c

(ν +
1

2
). (2.12)

Generally, we have the following convention:

ω =
fosc
c
. (2.13)

Therefore, we have G(ν) = ω(ν + 1
2
). Note that ω is measured in cm−1.

Anharmonic Oscillator

We know that the molecular oxygen is not exactly a harmonic oscillator, since the

atoms are no longer in a covalent bond with r2 distance dependence after a far enough

separation [4, 22]. Rather, the potential curve of the molecular oxygen approximates

a harmonic oscillator near the equilibrium point. As a first correction, we can add a

cubic correction term to the potential to have:

U = f(r − re)2 − g(r − re)3, (2.14)

where g(r − re) << f for r near re. We need to add higher power correction terms

for better approximations.

Energy Levels: If we substitute our new approximation for the potential energy

to the wave equation with g(r − re) << f it can be shown–for instance, via time-

independent perturbation theory [22, 24]–that the energy levels of the anharmonic

oscillator are given by:

Eν = hc ωe(ν + 0.5)− hc ωexe(ν +
1

2
)2 + hc ωeye(ν +

1

2
)3 + . . . , (2.15)
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with term values: [13, 21]

G(ν) = ωe(ν +
1

2
)− ωexe(ν +

1

2
)2 + ωeye(ν +

1

2
)3 + . . . , (2.16)

where ωexe << ωe and ωeye << ωexe. Note that ωexe and ωeye are symbols and

not products of ωe with xe and ye, respectively. Since deviations from the harmonic

oscillator tend to bring the levels closer together, there is a convention where g and

ωexe are always positive [4, 13, 21]. The others can be either positive or negative.

Again, the zero-point energy is given by: [13, 21]

G(0) =
1

2
ωe −

1

4
ωexe +

1

8
ωeye + . . . (2.17)

We can also reference the energy levels to the zero-point energy, in which case we

have: [13, 21]

G0(ν) = ω0ν − ω0x0ν
2 + ω0y0ν

3 + . . . , (2.18)

with: [13, 21]

ω0 = ωe − ωexe +
3

4
ωeye + . . . , ω0x0 = ωexe −

3

2
ωeye + . . . ω0y0 = ωeye + . . . (2.19)

Dissociation: We do not have infinitely many vibrational levels in an anharmonic

oscillator. After a certain number of vibrational levels, we simply disassociate our

oxygen molecule. This point-of-no-return is called the heat of dissociation or disas-

sociation energy–designated D0–is given by:

D0 =
∑
ν

∆Gν+0.5, (2.20)

where we have ∆Gν+0.5 = Gν+ 3
2
− Gν+ 1

2
with ν an integer with ν ≥ 0. The energy

difference De between the potential minimum and the disassociation asymptote is a

11



bit more:

De = D0 +G(0) = D0 +
1

2
ωe −

1

4
ωexe +

1

8
ωeye + . . . (2.21)

Hence, De corresponds to the maxima of G(ν) (i.e. De = Gmax(ν)). The correspond-

ing vibrational quantum number is given by:

νD =
ω0

2ω0x0

, (2.22)

when ∆G is a linear function of ν. Notice that this is an estimate of how many

vibrational levels there are. We do not necessarily have a bound state exactly at the

asymptote of the potential.

Figure 2.1: Schematic of the disassociation energy D0 and the energy difference De

between the zero point energy and the disassociation asymptote in a given electronic
state for a fictional molecule.

Nonrigid Rotator

After the rigid rotator approximation, let us consider a non-rigid rotator (i.e. the

distance between the two atoms may change during revolution). In other words,

the two atoms are connected by a massless spring and not by a massless rigid rod.
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Detailed evaluations indicate that the terms values are approximated (very well) by:

F (J) =
Er
hc

= B[1− uJ(J + 1)]J(J + 1), (2.23)

where B is the same as the case of the rigid rotator with u << 1. This equation is

often written as F (J) = BJ(J + 1) − DJ2(J + 1)2 with D > 0. The constant D is

related to the vibrational term value ω by:

D =
4B3

ω2
, (2.24)

assuming that the vibrations are simple harmonic motion. Since ω >> B, we have

D << B.

Vibrating Rotator

The nonrigid rotator approximation does not explain the observation of relatively

small deviations from its predictions, observed in rotation bands. In this approxima-

tion, the nonrigid rotator rotates and vibrates at the same time.

Energy Levels: If there were to be no interaction between the rotation and

vibration of the molecule, the total energy would be the sum of the energies of rotation

and vibration. However, the internuclear distance changes during vibration, changing

the moment of inertia (and thus the constant B). Remember that the molecule

completes one vibration much faster than one complete rotation. Also, notice that

the mean radius increases with increasing vibrational level, due to the outwards skew

of the potential [4, 13, 21]. So, we can use a mean B in our calculations, given by:

Bν = h
8π2cµ

[ 1
r2

]. To a first approximation, this constant is Bν = Be − αe(ν + 1
2
)+...

where Be is the rotational constant corresponding to the equilibrium separation re.

As usual, we have αe << Be. Similarly, we will use a mean D (called Dν) given by:
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Dν = De+βe(ν+ 1
2
)+ . . . , with again βe << De. Therefore, the rotational term value

for a vibrational level is Fν(J) = BνJ(J + 1)−DνJ
2(J + 1)2 + . . . , with Dν << Bν .

Symmetric Top

So far, we neglected the effect of the electrons of our molecule. These electrons

make the axial moment of inertia of the molecule more than 0 (though still very

small) contrary to our previous implicit assumption. A body is called a symmetric

top if two of its moments of inertia with respect to its 3 principal axes are the same.

As an approximation, we consider the nuclei surrounded by a rigid electron cloud,

which makes it a symmetric top. This is because the moments of inertia through the 2

axes perpendicular to the internuclear axis–passing through the center of gravity–are

the same.

Angular Momenta: To find the total angular momentum of a symmetric top,

called P, we add the angular momentum that is parallel to the internuclear axis with

the nonparallel angular momentum. If we neglect the electron spin, the internuclear

axis component of the electronic angular momentum has to be an integer multiple of

h
2π

. If we call this integer multiple Λ, we have:

| Λ |= Λ
h

2π
, (2.25)

with lambda being the quantum number for the internuclear axis component of the

electronic angular momentum. Remember that the total angular momentum is des-

ignated J. Therefore, we have:

J ≥ Λ, (2.26)

So, we can have:

J = Λ,Λ + 1,Λ + 2,Λ + 3, . . . (2.27)
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Finally, the angular momenta perpendicular to the internuclear axis is called N, and

it is completely determined by Λ,J.

Energy Levels: Solving the wave equation for the symmetric top, we obtain:

F (J) = BJ(J + 1) + (A−B)Λ2, (2.28)

where we have:

B =
h

8π2cIB
. (2.29)

IB is the moment of inertia of our homonuclear molecule with respect to any axis

that is perpendicular to the internuclear axis. For a given electronic state, there is a

constant offset due to electronic angular momentum–denoted with the constant A–

which will cancel in our transition energy calculations. We have to have a warning

here! In the following sections, we will have a constant Aν . This A and Aν are NOT

the same! This is confusing, yet standard notation...

Also, we clearly do not have any levels where J < Λ. For the nonrigid symmetric

top, we just add −DJ2(J + 1)2 to the term value formula. Finally for the vibrating

rotator, we replace B and D with Bν , Dν to have:

Fν(J) = BνJ(J + 1) + (A−Bν)Λ
2 −DνJ

2(J + 1)2 + . . . (2.30)

Fine-Structure and Spin-Orbit Coupling

To have even better approximations, we have to correct for relativistic effects. There

are two types of relativistic corrections under the umbrella term of Fine-Structure

Effects: Relativistic Kinetic Energy correction and Spin-Orbit Coupling.
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The Kinetic Energy correction arises due to the fact that the kinetic energy of

an electron is not really p2

2m
but:

T =
√
c2p2 +m2c4 −mc2 =

p2

2m
− p4

8m3c2
+O(p6 or v6), (2.31)

where p is electron’s momentum, m is its mass, and O(p6 or v6) is a higher order

correction term(s) [22]. Generally, we treat this addition to the Hamiltonian as a per-

turbation and then solve it using Time-Independent Perturbation Theory [22]. Notice

that there is no mention to electron’s spin in this analysis. Therefore–remember that

we have spin-1
2

in our case–this correction does not change whether our ion has s = 1
2

or s = −1
2

[22]. However, this is the entire scenario if there is only one electron,

and we have a lot more. So, this correction happens for each electron, and it gets

complicated even further with all the Couloumb interactions we have to take into

account for [4].

The Spin-Orbit Coupling effect arises due to the motion of electrons. In the

rest frame of an electron, the nuclei’s movements create a magnetic field B. So, there

is an interaction between electron’s magnetic moment and the magnetic field B [22].

This gives us a perturbative Hamiltonian given by [22]:

Hs.o = Aν (S · L) . (2.32)

The Hamiltonian’s dependence on the spin creates 2S + 1 fine-structure states for

a particle with spin S. For instance, two fine-structure states exist with s = 1
2

and s = −1
2

for a spin-1
2

electron [22]. The strength of this coupling is encapsulated

with the constant Aν–called the Spin-Orbit Coupling Constant–and depends on which

Hund’s case our system belongs to (Hund’s case-a for us.) For our molecule, the spin-

1
2

combines with the orbital angular momentum to make a doublet with Ω = 1
2

and 3
2
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[4, 11–13, 21, 22].

2.1.2 Transition Rules

Now that we know the basic theory, we should look at the transition rules. Here, we

follow the same successive approximation steps and discuss the applicable transition

rules at each step, for Infrared and Raman/Two-Photon Transitions.

Infrared Transitions

Rigid Rotator: We have two different types of transitions: 1-photon (Infrared)

transition and 2-photon transitions. For 1-photon ones, if we have a transition from

an upper state with J ′ and lower state with J ′′, the transition wavenumber is given

by:

w =
E ′

hc
− E ′′

hc
. (2.33)

We can define E
hc

= F (J) called the rotational term (in cm−1). So, we have:

F (J) =
E

hc
=

h

8π2cI
J(J + 1) = BJ(J + 1), (2.34)

with the constant B–called the rotational constant–given by:

B =
h

8π2cI
. (2.35)

Putting this all together, we can see that the wavenumber is given by: w = F (J ′)−

F (J ′′). However. there are some selection rules to be considered. For a rigid rotator,

it can be shown that an infrared transition happens if and only if:

J ′ = J ′′ ± 1, (2.36)
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(i.e. ∆J = ±1) which is the contribution limit of a single photon [12]. Notice that

the spectrum is made up of equidistant lines, since we have:

w = F (J ′′ + 1)− F (J ′′) = 2B(J ′′ + 1). (2.37)

There is no need to discuss the J ′′ − 1 case since we can just rename J ′′′ = J ′′ − 1 to

bring us to the same situation.

Harmonic Oscillator: According to quantum theory, the wavenumber of a transi-

tion is given by: ν = E(ν′)
hc
−E(ν′′)

hc
= G(ν ′)−G(ν ′′) (Units in cm−1). The corresponding

selection rule can be shown to be:

∆ν = ν ′ − ν ′′ = ±1. (2.38)

Notice that, no matter what the upper level is, we have G(ν + 1) − G(ν) = ω.

For homonuclear molecules (in this approximation) no infrared transition between

vibrational levels occurs since their dipole moment is 0.

Anharmonic Oscillator: In this case, the selection rule ∆ν = ±1 still gives the

strongest transitions. However, it can also be shown that we also have transitions

with ∆ν = ±2,±3, . . . However, the intensity of transitions decreases rapidly with

increasing | ∆ν |.

Non-Rigid Rotator: The selection rule for the 1-photon transitions is the same

as the rigid rotator (i.e. ∆J = ±1). Therefore, using the term values we can obtain

the wavelengths:

ν = F (J + 1)− F (J) = 2B(J + 1)− 4D(J + 1)3, (2.39)
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showing us that the lines are not equidistant compared to the rigid rotator.

Vibrating Rotator: For 1-Photon transitions the same selection rules as the

individual rotator/vibrator applies. So, ν can change by any integer with ∆ν = ±1

giving the most intense transitions. As for J we have the selection rule ∆J = ±1.

Symmetric Top: If we neglect electronic transitions (i.e. Λ does not change

between the initial and final states), for 1-photon transitions we have the selection

rules:

∆J = ±1 for Λ = 0, (2.40)

∆J = 0,±1 for Λ 6= 0. (2.41)

Raman/Two-Photon Transitions

Up until now, we considered 1-photon transitions. That is to say that either a

spontaneous emission or absorption of a photon causing a transition. We now treat

Two-Photon transitions, a special case of which is called a Raman transition. If we

add one photon and subtract one, that is called a Raman transition. If, instead, we

add two photons–or subtract two photons–that is called a Two-Photon transition. So,

Raman transitions are a subset of Two-Photon transitions [4]. Here, we will give the

analysis for Raman transitions for simplicity. However, the analysis is very similar–if

not the same–for two-photon transitions with mostly sign changes due to the fact

that we add two photons instead of one addition and one subtraction [4].

We have an incident light with energy hf ′ hitting a molecule. There will be 2 cases:

elastic scattering and inelastic scattering. In elastic scattering, the frequency of light

remains unchanged. In the inelastic case, it either gives energy to or takes energy

from the molecule. This energy difference should be equal to the energy difference
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between 2 states of the molecule:

∆E = E ′ − E ′′. (2.42)

Depending on whether the light quantum absorbs or gives energy to the molecule, its

energy after the collision will be:

hf ′ ±∆E. (2.43)

Hence, the frequency of the light after collision is: f ′±∆E
h

. Remember that Raman/Two-

Photon transition is NOT fluorescence. In fluorescence, the incident light is com-

pletely absorbed and the molecule can decay to several other states after the mean

life [4]. The other main difference is that the Raman/Two-Photon transition can hap-

pen at all frequencies of light whilst fluorescence can happen at certain frequencies

only.

Rigid Rotator Raman/Two-Photon Spectrum: For the rotational Raman/Two-

Photon Spectrum, it can be shown that the selection rule is: ∆J = 0,±2. Again,

∆J = 0 is the undisplaced line. Since for the frequency shift calculation ±2 would

give the same result, we only consider ∆J = +2. So, the frequency shift would be:

| ∆ν |= F (J + 2)− F (J) = B(J + 2)(J + 3)−BJ(J + 1) = 4BJ + 6B = 4B(J + 3
2
).

Hence, we have equidistant lines again.

Harmonic Oscillator: An analysis of the polarizability’s matrix elements can

show that the selection rule for the Raman/Two-Photon transition for a harmonic

oscillator is:

∆ν = ±1. (2.44)
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Hence, the lines are shifted by | ∆ν |= G(ν + 1) − G(ν) = ω to both sides of the

original line. Notice that Raman/Two-Photon spectrum depends only on polarizabil-

ity. Therefore, even in the case of no permanent dipole moment, we can still have a

Raman/Two-Photon spectrum.

Anharmonic Oscillator: The strongest transitions for the Raman/Two-Photon

Spectrum in the anharmonic oscillator approximation is still for ∆ν = ±1. However,

∆ν = ±2,±3,±4, . . . are allowed with decreasing intensity as | ∆ν | increases.

Non-Rigid Rotator: In terms of the Raman/Two-Photon spectrum, a non-rigid

rotator still has the same selection rules (i.e. ∆J = ±0, 2). Therefore, we have:

| ∆ν |= F (J + 2)− J(J) = (4B − 6D)(J +
3

2
)− 8D(J +

3

2
)3. (2.45)

Notice that the rotational constant D indicates the influence of the centrifugal force.

Vibrating Rotator: Vibrating Rotator’s Raman/Two-Photon Spectra selection

rules are the same as that of the anharmonic oscillator and rotator. Therefore, ∆ν

can take any integral value with ∆ν = ±1 giving the most intense transitions. For J,

we have ∆J = 0,±2.

Symmetric Top: As for the Raman/Two-Photon transitions for a symmetric top,

we have the selection rules:

∆J = 0,±2 for Λ = 0, (2.46)

∆J = 0,±1,±2 for Λ 6= 0. (2.47)
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2.1.3 Symmetry Properties and The Absence of Asymmetric

Wave Functions

When a molecular system is subject to an inversion through the origin, depending

on the system, the eigenfunctions either change sign or not. We have two linearly

independent eigenfunctions for each rotational level in a symmetric top with Λ 6= 0.

We can always choose these functions such that one of them does not change after an

inversion and the other does. In another words, we can choose these functions with

different parity. For a diatomic molecule, the rotational levels are classified depending

on the total eigenfunction’s response to an inversion. It is called positive if the total

eigenfunction does not change and negative if the total eigenfunction changes sign with

respect to an inversion through the origin. The total eigenfunction is the product of

electronic, vibrational and rotational eigenfunctions to a first approximation:

ψ = ψe
1

r
ψνψr. (2.48)

The vibrational part 1
r
ψν does not change with inversions since it only depends on

the internuclear distance. For a symmetric top with Λ 6= 0, we have one positive and

one negative rotational level for each J . Since our experiment involves Raman/Two-

Photon transitions, we can only have transitions between states with the

same sign (i.e. + → + and − → −).

Homonuclear Molecules

Wavefunctions of homonuclear molecules are even. Such systems are called to be

gerade (g for short). Systems are called ungerade (u for short) if their wavefunctions

are odd, with respect to the exchange of their two nuclei. For rovibrational states

within an electronic state, all positive levels have the same symmetry that is the

opposite of the negative levels (i.e. all positive levels are gerade whilst all negative
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levels ungerade or vice versa). Since our nuclei have zero nuclear spin, it can be shown

that transitions between gerade and ungerade states are forbidden. We only have

gerade wavefunctions for the X2Πg state of O+
2 . Therefore, our analysis looks

only at transitions between gerade wavefunctions [11, 23].

2.1.4 The Full Hamiltonian

These were the relevant approximations that would allow the reader to understand

the meaning of the constants used in the calculations done by PGOPHER [17]. The

full Hamiltonian incorporating and completing these approximations is the following:

[23]

H = Helectronic +
1

2µ
PR

2 + hcB(R)(N− L)2 +
1

2M
P2 +Hso

(e) +Hso
(n)

+Hss
(scal) +Hss

(tens) +Hhfs. (2.49)

First component of the Hamiltonian is the electronic Hamiltonian with Coulomb

and electonic-kinetic energies. The following two terms are vibrational and rotational

kinetic energies, respectively. The fourth term is the Hamiltonian for the mass po-

larization correction including the total linear momentum of electrons [23]. Mass

polarization is caused due to a shift of the center of mass from the midpoint between

the two nuclei, which is caused by the finite mass of the nuclei and electrons [25–27].

The following two terms H(e)
so and H(n)

so are portions of electronic spin-orbit and

spin-other-orbit terms involving the electronic and nuclear momenta, respectively.

The next two terms are for the electron spin-spin interaction’s scalar and tensor parts.

Finally, the last term describes the hyperfine effects of the nucleus, including the

electric and magnetic interactions such as electric monopole/quadrupole like isomer

shift [23, 28].

23



2.1.5 Specificities of X2Πg state of O2
+

Apart from the general theory for all diatomic molecules, there are certain features

of our system that we should specify. First of all, the nuclei of the oxygen molecular

ion are spin zero. Therefore, it does not have any hyperfine structure. So, we have:

[4, 11, 23]

Hhfs = 0 (2.50)

Our state of interest is X2Πg of O2
+, where X means that we are in the electronic

ground state and Πg means we are in a gerade state with | Λ |= 1. Furthermore,

the 2 is the result of 2S + 1, hence S = 1
2
. So, there are two fine-structure states

associated with the sign of the spin (i.e. ±1
2
) [13, 21–23]. Our molecule obeys Hund’s

case (a) which means that S and L are coupled via the spin-orbit coupling and L is

coupled to the internuclear axis. In this case, the good/useful quantum numbers are

Ω and J where we have Ω = Λ + Σ. Here, Λ is the internuclear projection of the total

electronic orbital momentum, and Σ is the internuclear projection of the electronic

spin [11, 22, 23].

In our case, for each given J , a state can have two different values of omega, namely:

[4, 11, 13, 21–23]

For a given J , we have Ω =
1

2
or

3

2
, (2.51)

whose only exception is J = 1
2
, where we only have Ω = 1

2
.

The two fine-structure states for each J form the basis states for our Hamiltonian.

So, we can write the Hamiltonian as a 2× 2 matrix and find the eigenvalues/vectors

to find the eigenstates. Since our system obeys Hund’s case (a), our matrix is more

or less diagonal–but not entirely–especially for higher J. We will then multiply this

matrix with the ket and then multiply the result with the bra to get the complex
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amplitude [11, 17, 19, 22, 23].

Fine Structure: Fine structure corrections to the energy levels arise due to rela-

tivistic corrections to the non-relativistic Hamiltonian. Since our system is in Hund’s

case (a). The biggest correction is the spin-orbit coupling ( 200 cm−1), whose related

constant–used in calculations–is Aν [11, 22, 23].

Λ Doubling: Remember that we are in a Π state, which means that | Λ |= 1.

Therefore, we have 2 possible states within the same energy level: Λ = 1 and Λ = −1,

which differentiates the two different orientations of the internuclear axis projection

of the orbital angular momentum. It can be shown that this is approximate. The

states actually split and have different energies. Furthermore, we only have symmetric

wavefunctions. So, we only have one state per energy level. Therefore, Λ-doubling

shows up as a vertical shift in the energy of the state [11, 22, 23].

2.2 Constants and Their Choice for Current Best

Spectroscopic Estimates

Here we present a quick review/table of all the relevant molecular constants in the

Full Hamiltonian used in our PGOPHER calculations, along with where we obtained

these constants and our rationale for choosing these constants [23].

2.2.1 Constants Used and Their Explanations

Uncertainties

We need to estimate the uncertainties in transition wavelengths after calculating

them. A look at the reported values and constants [29–31] reveals that to a first

approximation (2 significant digits) the uncertainty in the transition wavelength is
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Constant Name Explanation

Tν ∆E between the current state and another fixed state1

Aν Spin-Orbit Coupling Constant
Bν Rotational Constant
Dν Centrifugal Distortion Term for Quartic Correction
Hν Centrifugal Distortion Term for Sextic Correction
pν Constant used for Lambda Doubling
qν Constant used for Lambda Doubling
DAν Centrifugal Distortion Correction term for Aν

Table 2.1: Constants used by PGOPHER to calculate the transition wavelengths. Not
all of these constants are used for every level. The ones used for a given vibrational
level depends on which ones the authors provided [23, 29–32]. Hν is the result of
additional correction terms to the Anharmonic Oscillator approximation, affecting the
Nonrigid rotator approximation [13, 21, 23, 29–32]. Additionally, pν , qν are constants
used to approximate the strength of Lambda Doubling [13, 21, 23, 29–32].

1Generally, either the ground state of the neutral molecule, or the ground state of
the molecular ion.

given by the uncertainty of Tν (which is what we used for uncertainty). Note that the

spacing between rotational lines may be known to higher precision since Tν ’s cancel.

2.2.2 Constant Choice From Literature

The most accurate literature to date, for molecular constants in the X2Πg state of

O2
+ can be found in references [29–31].

For the vibrational states ν = 13 − 38, we used the values found in [31] since

there was no other reference providing molecular constants for these levels. For the

vibrational levels ν = 2−12, we used the values given in [30] since they gave values for

more of the constants given in table 2.1. This results in a more accurate calculation

of transition wavelengths for these states. Furthermore, the values in [31] and [30]

agree within their respective uncertainties. Therefore, we can safely use [30]. Finally,

for the levels ν = 0, 1 we could have used both [31] and [29]. However, [31] mentions

that the values in [29] are more precise. So, we mainly used the values in [29] and

used [31] for parameters that [29] did not report a value for.
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Data Obtention Methods of [29–31]: The oldest study in [29–31] is [29],

followed by [31] and [30], respectively. [29] is the study of A→ X emission spectrum

where they used a mixture of helium and oxygen, which they pumped through a

microwave discharge at 2.45 GHz. They then isolated–using a 1-m spectrometer–the

emission at 408.2 nm. They obtained the strongest signal in the pressure ranges of

∼ 0.05 Torr using pure oxygen. Subsequently, they passed pure oxygen through a

liquid nitrogen cooled molecular seive column with a discharge power of 150 W. They

obtained the photographs using a 3.5 m RSV spectrograph [29].

[30] is also an A → X emission spectrum study, and they obtained their first

data by accident via a tungsten hollow cathode discharge. They used oxygen in a

continuous fast flow with pressures of 0.2 Torr and 3.5 Torr neon, using a discharge

of 221 mA of current. They then steered the output to a McMath-Pierce Fourier

Transform Spectrometer. Their integration time was 54 minutes with a resolution of

0.03 cm−1. Furthermore, they limited their scan region to 15900− 30200 cm−1. The

existence of neon lines allowed them to calibrate the spectrum [30].

Finally, [31] is a study utilizing the photoionization of the neutral oxygen molecule

with one X-ray/vacuum-UV photon. They used a high-resolution photoionization

facility of Chemical Dynamics Beamline at ALS. The instrument has “a 10 cm period

undulator, a gas harmonic filter, a 6.65 m off-plane Eagle monochromator, and a

photoion-photoelectron apparatus.” Their harmonic gas filter suppressed undulator

harmonics with greater than 24.59 eV photon energies, and they used helium in

the gas filter. They then channeled the light to the 6.65 m monochromator with a

4800 lines/mm grating. After that, the light enters the experimental apparatus where

they measure the PFI-PE (Pulsed Field Ionization Photoelectron Bands) bands with

a resolution of 0.016−0.064 angstroms (Full-Width Half Maximum). They also varied

the photon energy step size between 0.1− 0.25 meV [31].
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We wanted to calculate the transition energies with respect to the vibrational

ground state of the X2Πg state of O+
2 and not with respect to the ground state

of the neutral oxygen molecule. Therefore, we had to translate the Tν values for the

levels ν = 0, 1 given in [29], since they give them with respect to the ground state of

the neutral oxygen molecule. The actual values we used for these constants can be

found in Appendix B, and the actual table with transition wavelengths can be found

in Appendix C. All of the given values are in cm−1 unless specified otherwise.

Brief Introduction to PGHOPHER’s Calculation Method: For finding the

energy levels, PGOPHER expands the wavefunction–call Ψi–of a rovibrational level

using basis states |j〉 [19]:

Ψi =
∑
j

cij |j〉 . (2.52)

In order to calculate cij, the Hamiltonian is written in its matrix form and diag-

onalized using the basis states |j〉. In general–though there is a dependence of the

basis states and the Hamiltonian to the system–basis states are typically in the form

|ηsJKM〉 where η designates the electronic and vibrational state (i.e. vibronic state)

with the total electron spin. s denotes the rovibronic symmetry, J the total angu-

lar momentum, K the projection of J to a molecule-fixed axis, and finally, M the

projection of J to a laboratory axis [19]. Furthermore, the basis kets |ηsJKM〉 are

themselves linear combinations of |ηJKM〉. If we do not have any external electric or

magnetic fields, the energy level does not depend on M . So, the only relevant basis

states will be limited to states with single J and rovibronic symmetry s [19]. For a

more detailed explanation of the calculation method along with the treatment of de-

generacies and further functionalities of PGOPHER, please see [17–20]. Futhermore,

PGOPHER calculates the eigenstates. For instance, we have two basis states (given

by Ω = 1
2
, 3

2
for our experiment) and PGOPHER forms the eigenstates using these

basis states’ superposition [4, 17–20]. We are in Hund’s case-(a), so the Hamiltonian
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is almost diagonal for low J in case-(a) basis [4, 17–20].

Since our first experiments will try to measure the wavelength of |O+
2 X2Πg, v = 0〉 →

|O+
2 X2Πg, v = 16〉 [11, 12], we also simulated this two-photon spectrum of X2Πg O+

2

with the assumption that we only had access to J = 1
2
, 3

5
, 5

2
, 7

2
in our initial state

|O+
2 X2Πg, v = 0〉, due to our state preparation technique [4, 12]. Our REMPI spec-

trum should agree with this simulation–given in fig. 2.2–provided that the spherical

tensors T(0, 0), T(2, 0) and T(2, 2) have equal weight in calculation [4, 17].

Figure 2.2: Simulation of the REMPI Spectrum we would expect for the transition
from ν = 0 to ν = 16 level of X2Πg O+

2 –using PGOPHER software–provided that
the three components that make up the two-photon transition are weighed equally.
These are the sperical tensors T(0,0), T(2,0) and T(2,2) where the first index is the
rank and the second is the component. We have three clusters as expected. From left
to right–respectively–they are (Ωinitial = 3

2
) → (Ωfinal = 1

2
), (Ωinitial = 1

2
) → (Ωfinal =

1
2
) with (Ωinitial = 3

2
)→ (Ωfinal = 3

2
), and (Ωinitial = 1

2
)→ (Ωfinal = 3

2
) [4, 17–20].
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Chapter 3

Experimental Apparatus

Now that we know what we would like to achieve and the theory behind these

transitions, we should design and build an apparatus that we can use to drive and

measure the wavelength of these transitions.

3.1 Outline and Motivation

In order to detect oxygen molecular ions in the correct quantum state, we need to

create them. We will be using a (2+1) REMPI method with our pulsed YAG laser

from Quantel. However, we need molecular ions to be as cold as possible, preferably

about 5 K. The coldness of the molecules allows us to spectroscopically choose a

particular rotational state of interest. Furthermore, as we approach to 5 K, more of

the molecules are in the ground vibrational and rotational states. This is particularly

important since we are trying to drive the transition |X2Πg, v = 0 >→ |X2Πg, v =

16 > [4, 11, 12, 14].

We will use free jet expansion to achieve the cooling, since our neutral oxygen

molecule is already a gas in room temperature. After obtaining the correct state

of the oxygen molecular ion, we need to detect it. Furthermore, our first short-term
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goal is to measure the transition frequency of |O+
2 , X

2Πg, v = 0〉 → |O+
2 , X

2Πg, v = γ〉

with γ > 0 an integer, but this transition does not fluoresce (i.e. no photon emitted

via decay). Therefore, we have to use a destructive method to detect the transition.

We will use another photon that dissociates the oxygen molecule provided that it is in

the right state. After the dissociation, we will look at the remaining molecules/atoms

to see the strength of the transition at a given wavelength of laser [4, 11, 12, 14]. To

do this, we accelerate ions through a Wiley-McLaren configuration (WML) Time of

Flight Mass Spectrometer (ToF-MS), which consists of 3 parallel rectangular plates

sourcing uniform electric fields [11, 16]. In ToF-MS, we have different atoms,molecules

with the same charge and we give them all the same amount of kinetic energy. This

causes them to have different speeds based on their mass. Since the arrival times

of oxygen molecule and atom are different (given the same amount of energy), we

can tell how much of the initial molecules we dissociated. Thus, the distribution of

molecular ion to atomic ion will tell us about the strength of the transition at the

wavelength we used to drive it [4, 11, 12, 14, 16].
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Figure 3.1: Schematics of the ToF-MS with Einzel Lens for optical focusing of the
ions. Wiley-McLaren Configuration allows for flexible adjustments of time-spacing
and space-focusing of the ions [16]. The ions are created at the red dot in the figure
and are accelerated towards the detector from left-to-right thanks to the potential
differences Vb − Va and then Vc − Vb [16]. After exiting the experiment region (i.e.
past place with voltage Vc), the ions are optically focused with the Einzel Lens [33–
35].

There are two main reasons behind using a WML Configuration rather than just

2 parallel plates. Firstly, we have a ToF-MS which differentiates ions of equal charge

based on their time of flight of a fixed distance [16]. Ions are given the same amount

of energy in the acceleration section (i.e. the section between the parallel plates with

uniform electric field) and then they drift through a field-free region. Compared to a

2 parallel plate scheme, a WML configuration allows us to adjust ions’ arrival times

so that they do not depend on inital space and velocity distributions of the ions [16].

Our plates do not have infinite surface area, and we cannot really have plate sep-

aration to be much smaller than the plate length. So, the plates only approximate

parallel plate capacitors. Therefore, the electric field between the plates may not be

totally uniform. To remedy for this potential irregularity of the electric field–which
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will cause some of the ions to exit at an angle from the last plate–we add an Einzel

Lens at the exit of the WML configuration to optically focus the ions to the central

axis of the drift tube, as can be seen in figure 3.1. Succinctly, an Einzel Lens is a

collection of electrodes with different voltages that alters the trajectory of the ions

without changing their kinetic energy [33–35].

At the physical end of the spectrometer, we need a detector to capture the ions

for spectroscopy. For that, we are using a Microchannel Plate Detector (MCP) [12].

Finally, for the physical construction of the apparatus, we wanted to have the flexibil-

ity to modify the apparatus in the future. Therefore, instead of using totally custom

made parts, we used Kimball Physics’ eV Parts products which are a collection of

hundreds of standardized parts. We customized some of them with cuts and welds.

These parts are divided in series B and C. Generally, parts in the same series are

compatible with each other which turns assembly into sliding parts in their places.

Using these parts makes future modifications to the assembly a matter of obtaining

the right parts from series C (which is what we used) and building on top of the old

one.

3.2 Apparatus Theory

3.2.1 Wiley-McLaren Configuration Acceleration Stage

A Wiley-McLaren configuration consists of 3 parallel plates separated by distances s

and d, as shown in figure 3.2 [16]. We have two circular holes through the electrodes

biased with Vb and Vc to make sure that ions can exit the acceleration stage after

being formed by REMPI. These holes are covered with a metal mesh that creates an

equipotential while still allowing ions to exit. The mesh is from the company TWP.

It has 50 wires/inch with 0.0012” wire diameter. The wires are made of 316 stainless
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Figure 3.2: Schematics of the Wiley-McLaren Configuration for Ion Extraction, ions
are created roughly in the middle of region s and accelerated to the detector D away
from the last electrode [16].

steel, and the mesh has a transparency of 88%. Using this configuration, we would

like this mass spectrometer to have 2 properties:

1. Ions with different masses should arrive at different times to the detector (i.e.

O+
2 and O+) [16].

2. The different ion distributions in time should not overlap with each other [16].

Assuming a Gaussian distribution of the arrival times of ions, these concepts are

illustrated in 3.3:
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Figure 3.3: A descriptive (not drawn to scale [i.e. not
√

2 apart]) oscilloscope trace if
the temporal overlap of different ions is not considered in the design. Here, we cannot
distinguish the ions in the middle region which renders doing statistical analysis
harder.

To eliminate this overlap and to make sure that we have temporal separation of

ions of different masses, there are 2 factors to consider, the first one is called space

focusing and the second one is called time spacing [16].

Space focusing is the following: suppose ions are created at position p in the

middle of electrodes A and B. Since we cannot create all of the ions at the same

position, there will be an error ∆p in the distances of our ions to the exit [16]. In

our case, this error will come from the diameter of our oxygen gas beam that we are

ionizing and from the diameter of our laser beam [4]. So ions will be created at p± 1
2
∆p.

The ions created nearer electrode A will receive more energy and will go faster, but

they have farther to travel. Space focusing makes sure that the arrival time difference

∆T∆p these spatially separated ions is as small as possible [16]. Furthermore, an

additional source of positional error will happen due to the fact that we are ionizing

for some length along the beam [4]. Here, the ions are assumed to have the same
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initial velocity. The extreme case where they have anti-parallel velocities is handled

by time spacing [16]. The setup for space focusing is illustrated in figure 3.4:

Figure 3.4: Setup for space focusing of ions illustrated. Space focusing makes sure
that ions of the same type that get different energies–due to traveling through different
lengths of accelerating electric field–arrive to the detector at the same time [16].

Time spacing is the following: suppose 2 ions are created at position p, but one is

moving directly towards electrode B and the other is moving directly towards electrode

A. Notice that in this case, the ion with an initial velocity towards the left (in figure

3.5) first needs to come to a halt, and then reverses direction [16]. Consequently, it

gets a time delay compared to the ion with initial velocity towards the right. (In fact,

when this ion reaches the position of the one with the initial velocity towards the

right, it will have the same velocity as the other at that position.) [4, 16] Call this

delay ∆T⇀↽. Time spacing tries to minimize the impact of this constant time delay
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[16].

Figure 3.5: Setup for time spacing of the ions, illustrated. Time spacing makes sure
that the constant time delay between ions created at the same position but with anti-
parallel initial velocities do not prevent us distinguishing ions with different masses
[4, 16].

Before a quantitative analysis of the WML configuration, we need to clarify that

neither space-focusing nor time-spacing has anything to do with the optical focusing

of the ions. These procedures focus the ions in time [16]. The optical focusing may

not be needed in an ideal case with perfect parallel plates and ions created at a single

point at the center of the cuboid formed by the two electrodes between which our

ions are formed. In that case, the ions would be accelerated exactly in a straight line

coinciding with the location of our detector. On the other hand, if the approximation

does not hold, the optical focusing will be achieved with an Einzel Lens placed at the

end of WML setup. Optical focusing may still be needed even when the parallel plate
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approximation holds, since we create the ions along the whole laser and that region

might be bigger than the diameter of the MCP [4, 33–35].

3.2.2 Quantitative Analysis of WML

The ions are created roughly in the middle of the region s, between the electrodes A

and B. They travel through a region s0 and the entire region d. So, we have s0 ≈ s
2
.

Therefore, if they have an initial kinetic energy of U0, the ions will have a final energy

of [16]

U = U0 + qs0Es + qdEd, (3.1)

where Es, Ed are the electric fields of regions s and d. They are assumed to be constant

due to parallel plate capacitor approximation. Then, the time of flight is just the sum

of time it takes the ions to fly through regions s, d and D. In the case of a field-free

region D, they are given by [16]

Ts =

√
2m

qEs
(
√
U0 + qs0Es ±

√
U0), (3.2)

Td =

√
2m

qEd
(
√
U −

√
U0 + qs0Es), (3.3)

TD =

√
2mD

2
√
U

. (3.4)

In Ts, the plus-minus sign differentiates between the ions–at the time of creation–with

velocities away from or towards the exit [16]. Now, if we accelerate the ions through

a big enough electric field such that the initial energy U0 is negligible, the entire

time-of-flight formula simplifies to [16]

Ttot =

√
m

2Utot

(
2
√
k0s0 +

2
√
k0d

1 +
√
k0

+D

)
, (3.5)
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where we have k0 and Utot defined as [16]

k0 =
s0Es + dEd

s0Es
, (3.6)

Utot = qs0Es + qdEd. (3.7)

As a reminder, here k0 is a simple unitless constant (for a given voltage configuration)

substitution to write the total travel time more compactly [16].

4
5
6
7
8
9

Figure 3.6: Travel time of oxygen molecular ion (32 amu) depending on the back and
middle plate voltages. For the atomic ion, there should just be an additional factor
of 1√

2
. This plot assumes that ions go through half of the entire region s (i.e. s0 = s

2
)

and d. The contours’ unit is microseconds (µs).
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0.025
0.050
0.075
0.100

Figure 3.7: Normalized absolute value of the travel time difference of two oxygen
molecular ions (32 amu, one at position s

2
, the other at s

2
+ ∆s where ∆s = 0.001

meters) depending on the back and middle plate voltages. For the atomic ion, there
should just be an additional factor of 1√

2
. Notice that you can clearly see the space

focusing effect on the differential time of arrival. We also see that our voltage config-
uration is in the most optimal band (denoted by the red dot on figure). The contours
are unitless.

First, remember that we have s0 ≈ s
2
. Now, for space-focusing we would like to

make sure that ions created at s0 + ∆s0 and s0 − ∆s0 reach the MCP at the same

time. So, we should have [16]

(
dTtot
ds

)
s0

= 0, (3.8)

since this will make sure that Ttot(s) is roughly constant around s0. Using this and
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isolating D, we get [16]

D = 2s0

√
k3

0

(
1− d

[k0 +
√
k0]s0

)
. (3.9)

Notice then that we have 4 independent variables D, s, d, Ed
Es

. Therefore, we can set

any 3 of them and the last one will be completely determined [16]. In our case,

the easiest one we can adjust is Ed
Es

since that only involves voltage adjustments.

Furthermore, we would like to have parallel plate capacitor approximation to hold

true, which restricts our flexibility on s, d. Therefore, we will fix s, d,D. Now, notice

that equation 2.8 implies that we either have a maxima, minima or an inflection point

at s0. Generally with the most suitable parameters we choose to have the maximum

mass resolution, we have a maximum at s0 [16]. This gives us another requirement,

which is [16]

d

s0

<
(k0 − 3)D

2s0k0

. (3.10)

The mass resolution of a mass spectrometer is defined as the highest amu m such

that the spectrometer can distinguish ions of mass m and m− 1 amu [16]. Therefore,

we would like to have a mass resolution of at least 32 amus (O+
2 ), but ideally, we

would like to have as big a mass resolution as we can get. Hence, we will use equation

3.10 in calculation of parameters. As we will see in the following paragraphs, mass

resolution increases with increasing k0. So, we would like to have k0 as big as possible.

(This is the main reason why we have a maxima at s0 since we also have D >> d)

[16]. Notice that if k0 ≤ 3 then we always have a minima. So, we have an additional

constraint that is [16]

k0 > 3. (3.11)

Now, we should treat time-spacing. Suppose two ions are created at the same position

p but with anti-parallel velocities. One of them (call Alice) has a velocity directly

towards the exit, and other (call David) has a velocity directly away from the the exit.
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Alice will get accelerated immediately towards the detector, whilst David first will

get decelerated by the electric field and then change direction, come to the starting

position, and then follow the trajectory Alice started a time ∆Tturnaround ago [16].

This time lag is called the “turn-around” time, which can be shown to be [16]

∆Tturnaround =
2v0m

qEs
=

2
√

2mU0

qEs
. (3.12)

In time-spacing, we try to make sure that the arrival time distribution of adjacent

masses (i.e. masses of k and k−1 amu) are separated by more than this ∆Tturnaround.

The first mass k at which the arrival time distributions of adjacent masses is equal

to the turn-around time determines our time-spacing mass resolution Mts [16]. This

is the resolution we would get if the only factor on mass resolution were to be time-

spacing. Notice that the naming can be a bit deceiving here, since unlike space-

focusing, there is no actual temporal modifications to ions’ arrival times in time-

spacing [16]. Again, it is a constant delay that we are trying to minimize the effect

of [16]. Using equations 2.5, 2.14 with masses m,m+ 1. Mts can be shown to be [16]

Mts =
1

4

√
Utot
U0

(k0 + 1√
k0

− (
√
k0 − 1)d

(k0 +
√
k0)s0

)
. (3.13)

Now, let us calculate the mass resolution Msf due to space-focusing alone. First,

series expand T (s) of equation 2.5 around s0. Then, use the expansion to take the

difference of T (s) and T (s+ δs) to obtain the arrival time difference of [16]

∆Tsf =
∞∑
n=1

1

n!

(dnT
dsn

)
s0

(δs)n. (3.14)

Now we define the space-focusing mass resolution Msf to be the largest number of

amu’s k such that [16]

∆Tsf < Tk+1 − Tk, (3.15)
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where Tk+1 − Tk can be found by using equation 2.5 to be [16]

Tk+1 − Tk =
(√

1 +
1

m
− 1
)
Tk '

Tk
2m

. (3.16)

So, we would like to find the mass k such that ∆Tsf = Tk+1 − Tk ' Tk
2m

to find our

space-focusing mass resolution. Unfortunately, ∆Tsf is an infinite series, however, if

we make some approximations we can simplify the expression [16]. First note that,

in evaluating ∆Tsf we should use ∆s
′

= ∆s
2

since the deviation from s0 is ±∆s
2

.

Furthermore, we will only use the first non-zero term in the series. Since, we have

a maximum at s0, the first term is zero [16]. Therefore, we use the n = 2 term.

Differentiating equation 2.5 twice, and making the assumptions k0 >> 1, k0 >>
d
s0

we can find the space-focusing mass resolution to be [16]

Msf ≈
16k0s

2
0

∆s2
. (3.17)

Now, we need to determine what is the overall resolution of our ToF-MS device.

Giving a precise number is hard to accomplish. However, we can easily find a lower

bound and higher to our resolution. First of all, it is clear that we cannot have a

higher mass resolution than Msf , or Mts [16]. On the other hand, if we suppose

that the total time variation in arrival times of a given type of ion is the sum of

the time differences found for space-focusing and time-spacing, we can make an error

propagation like analysis and say that the overall resolution will be bigger than or

equal to Mlb, which is given by [16]

Mlb =
( 1

Msf

+
1

Mts

)−1

. (3.18)

Notice that the time-spacing portion of our analysis becomes less relevant in the

determination of our overall resolution with the approximation U0 ≈ 0J . If we look
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at equation 2.15 and replace U0 ≈ 0J , we get an effective time-spacing resolution of

Mts ≈ ∞. Therefore, the overall resolution further simplifies to [16]

Mlb ≈Msf . (3.19)

As a rule of thumb for design parameters, it is preferable to have sEs be much

smaller than dEd, i.e. we first extract the ions away from the gas path and then we

apply the major accelerating field. This rule may not hold true, if the ions’ velocity–

parallel to the exit-hole plane–is high enough to make them miss the exit with such

a small sEs. In other words, if U0 is sufficiently higher than 0 the rule may not hold

[4, 16].

3.2.3 Einzel Lenses

Before discussing Einzel lenses we should introduce Electrostatic lenses, to which

Einzel lens belong to. Electrostatic lenses are any collection of electrodes with spec-

ified voltages that can be used to change the trajectory of ions in a desired manner.

As an analogy to optical lenses, one can think of the ions as the light beam and

electrostatic lenses as the optical lens [33–35]. Electrostatic lenses can be formed by

two/three concentric cylindrical electrodes separated by a distance, two/three con-

centric arrangement 4 plate electrodes arranged in a square/rectangle, and in many

other possible combinations [33–35]. Here, we will focus on the explanation of cylin-

der lenses. However, a similar analysis applies to rectangular lenses. We chose to use

cylindrical lenses, since it is easier to construct and to mount in place in our vacuum

chamber. Furthermore, we used reference [35] in choosing a lens with suitable focal

lengths for our experiment. The authors there give results for three-cylinder lenses.

In cylindrical lenses, we let ions travel through the center of the cylinders. These

cylinders have a constant voltage applied to them. Since the electrode is cylindrically
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Figure 3.8: Here we illustrate 4 different approaches to making electrostatic lenses
using stacks of 2 and 3 of the same base electrode combination. The first two use
cylindrical electrodes while the last two use rectangular plates. Ions are focused due
to the curvature of the electric field between the stacks [33–35].

symmetric, there is no net electric field inside the cylinder if the cylinders are infinitely

long [33–35]. Therefore, the ions do not feel a force when they are traveling through

a given cylinder. Since we have only finite cylinders, there will be a net electric field

within the cylinder. So, if we put the neighboring electrode at a different voltage

than the one that the ion just traveled through, there will be fringing fields between

these two cylindrical electrodes. This fringing field will alter the trajectory of the ion,

bringing it to a focus or defocus [33–35]. This phenomenon is illustrated in 3.9:
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Figure 3.9: Sample ion trajectories for two-cylinder and three-cylinder lenses. Both
trajectories (orange line) are for a positive ion. The outer electrodes are held at
ground–for the three-cylinder setup–to avoid any leaking fields into the drift tube.

In our case, we will have positive ions and we want to have a converging lens to hit

a comparatively small circular detector with a 17.78 mm diameter. We will also use

a 3 cylinder lens with outer two cylinders at ground and the middle cylinder above

ground, which is called an “Einzel” or Unipotential Lens [33–35]. Contrary to the

two cylinder lens in fig. 3.8, Einzel lenses focus ions without changing their overall

kinetic energy. This is desirable since we are differentiating our ions based on their

free flight-times (given a constant kinetic energy) [33–35].

Einzel lenses are thick lenses. This implies that the thickness of the lens is close to

its focal lengths [33–35]. Thick lenses are illustrated in figure 3.10:
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Figure 3.10: Optical diagram of an Einzel lens. Since it is a thick lens, we have to
have 2 focii and 2 principal planes. Notice that principal planes P1 and P2 are always
crossed on the opposite sides of the lens, relative to their focii [33–35].

Contrary to thin lenses, thick lenses have 2 principal planes P1, P2 and 2 associated

focal points f1 and f2. In 3.10, f1Om
and f2Om

denote the focal lengths measured from

the midplane Om. Principal planes P1, P2 are always crossed in lenses used in ion

optics [33–35]. In the case of 2 element lenses, the principal planes are always located

in the low voltage side of the lens. In our case of a 3 element Einzel lens with outer

electrodes at the same voltage, principal planes are still crossed. So, the principal

plane associated with the left side of the lens is closer to the right side of the lens and

vice versa. However, they are equidistant to the midplane Om [33–35]. Again due to

the voltage symmetry, we have f1Om
= f2Om

= fOm and f1 = f2 = f . Furthermore,

if the lens is not too strong, the principal planes P1 and P2 are very close to the

midplane Om of the lens. Therefore, we can approximate dobj ≈ Dobj and dim ≈ Dim

[33]. Some quick relationships for generalized electrostatic lenses can be derived using

classical geometric optics. First of all, angular and linear magnifications Mang, Mlin

are given by [33]

Mling =
f2 − dim

f2

=
f1

f1 − dobj
, (3.20)
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Mang =
f1 − dobj

f2

=
f1

f2 − dim
. (3.21)

Using Newton’s law and Newton’s formula–respectively– we obtain [33]

(dobj − f1)(dim − f2) = (Dobj − f1Om
)(Dim − f2Om

) = f1f2, (3.22)

f1

dobj
+

f2

dim
= 1. (3.23)

Since we are using an Einzel lens that has symmetry with respect to the mid-plane

Om with f1 = f2 = f , this expression simplifies to [33]

f1

dobj
+

f2

dim
=

f

dobj
+

f

dim
= 1 ≈ f

Dobj

+
f

Dim

, (3.24)

which–when rearranged–turns into the standard formula used for thin lenses [33]

1

f
≈ 1

Dobj

+
1

Dim

. (3.25)

The main challenge is to actually find this focal length f given an Einzel lens con-

figuration with voltages Vb, Va = 0V applied to inner electrode and outer electrodes–

respectively–with diameter D
′

and electrode separation g as can be seen in figures

3.1,3.9,3.10. To achieve this, we define an axial potential Φ(z) where the z-axis is

chosen as shown in figure 3.10. Notice that the axial potential does not depend on

x,y coordinates within the lens, because–ideally–the electric field inside the lens is

identically zero due to cylindrical symmetry. Now, if we know this axial potential,

we can find the focal length f by integrating the ray equation [33, 34]

d2%

dz2
+

3

16

(Φ
′

Φ

)2

% = 0. (3.26)
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where % = r 4
√

Φ and r is the distance of the ray to the z-axis. The tuple (r, z) is also

called the ray vector [33]. Generally, Φ(z) is found numerically, and therefore, the

integration of equation 2.29 is also done numerically. One procedure to find Φ(z) for

our lens starts with dividing the cylindrical elements into small annuli and calculating

the charge densities each annuli has. Remember that if we do not have any dielectrics,

the potential Φ(z) is completely determined by free surface charges of the conductors.

After finding these charge densities, one uses them to compute the axial potential [34].

Before we start the quantitative analysis, we need to make a few assumptions to

simplify our calculations. First, we assume that the thickness of the hollow cylinders–

from which we constructed the lens assembly– is much smaller than their radius. This

allows us to consider the charge densities on the outside and inside surfaces of a given

annuli as a single charge sheet [34, 35]. We may do this since only the sum of these

two charge sheets determine the potential of places not close to the hollow cylinder.

Therefore, if the thickness of the cylinder is much smaller than its radius, we may

regard points around the z axis to be far away from the inner/outer surfaces [34].

So, we have annuli Ci with voltages Vi and vector ri from the origin to the surface

of annulus Ci. If the total charge density on the annulus i is σi(ri) with no additional

charges, then potential at r is [34]

U(r) =
1

4πε0

∑
i

∫
Ai

σi(ri)dAi
|r− ri|

, (3.27)

where Ai is the surface of the annulus C〉. Notice that every Ai is equipotential.

Therefore, [34]

U(rj) = Vj =
1

4πε0

∑
i

∫
Ai

σi(ri)dAi
|rj − ri|

, (3.28)

where rj is on Aj. The process for finding these charge densities has 6 steps: [34]
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1. Divide the cylinders into annuli each of which having uniform surface charge

density σi.

2. Make an initial guess σ0
i for these charge densities.

3. Find the resulting potential U0
i on the surface of each annuli i resulting from

the guessed charge densities, using equation 2.31.

4. Find the error (∆U = U0
i −Vi) between the applied potential and the one found

from the guesses

5. Use these errors to refine your guesses for the charge densities, and repeat 2,3,4

until you get the precision you would prefer.

6. Calculate potential U(r) everywhere using equation 2.30.

Now that we are more familiar with the theory behind Einzel lenses, let us discuss

why we might need one in our experiment before discussing how we obtain our cold

molecular beam. Remember that the main premise of our ToF-MS is the existence

of a uniform electric field between our accelerating plates. In reality, this is only

approximate since the length of our plates and their separation are comparable. Fur-

thermore, our ions have initial velocities of several hundreds of meters per second at

moment of creation [4]. Therefore, in practice, the ions will not travel in an exactly

straight trajectory towards our detector. So, depending on whether we have enough

signal, we will use the Einzel lens to push the ions going off-track towards our detector

to increase our signal. Finally, for the actual designed lens in the next section, we

will use the already calculated values from [35].

3.2.4 Free Jet Expansion

In the outline section, we motivated for the use of free jet expansion, now we glance

at the underlying physics of it. For a detailed explanation of the physics, see [12, 15].
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Remember that we would like our gas to be around 5K for the ease of state prepa-

ration of the molecular oxygen ion, especially to have the molecules in the ground

rotational level [4, 11, 12]. Therefore, simply leaking gas into the chamber is not

desirable, since that would result in a gas temperature of 300 K. Furthermore, our

Microchannel Plate Detector (MCP)–for ion detection–is very sensitive to pressure

and humidity, therefore, a constant gas leak might easily cause shorts within the de-

tector, thereby ruining it [4, 12]. Consequently, we will be pulsing the oxygen gas

into the chamber to reduce the gas load, and use free jet expansion to rotationally,

translationally and vibrationally cool the gas [12, 15].

Figure 3.11: A schematic of the free jet expansion. M denotes the speed of the gas
in terms of Mach. Our experimental region should be within the zone of silence after
the quitting surface, which can be seen in figure 3.12. After the quitting surface, we
have free molecular flow with supersonic speed until the Mach disk [12, 15]. Figure
taken from [12], under Creative Commons Attribution (CC BY) license

In the free jet expansion, our gas starts in the canister with pressure P0 and tem-

perature T0. After we open the canister to the high vacuum chamber with background

pressure Pb, the pressure difference P0−Pb accelerates our gas, since the radius of the

opening to the chamber decreases as the gas comes closer to the exit as can be seen
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from figure 3.11 [12, 15]. If the pressure proportion P0

Pb
is higher than G = (γ+1

2
)

γ
γ−1 ,

our gas reaches a mean velocity in the supersonic range. For all gases we have,

G < 2.1. If we have P0

Pb
< G, then our gas will flow subsonically and the exit pressure

of the gas will be ≈ Pb. For values where P0

Pb
> G, the pressure at the exit approaches

P0

G
[12, 15]. Notice since our exit pressure is higher than the background pressure, the

gas has to further expand due to the boundary conditions created by the background

pressure Pb. Therefore, gas in this condition is called to be “underexpanded” [12, 15].

There are a few important traits of the supersonic flow that are of particular rel-

evance to us. First of all, the gas velocity (in units of Mach) is denoted M , which

increases with a coupled increase in the flow area [12, 15]. Therefore, we have M > 1

after the exit. Also, since the information travels at the speed of sound inside the gas,

M > 1 implies that the upstream gas has no knowledge about any of the shocks that

occur [12, 15]. Therefore, the dynamics of our gas is simple for our analysis. However,

the gas still has to adjust even though it does not know about the boundary con-

ditions. This apparent paradox gives rise to shock waves which have large pressure,

density and temperature [12, 15]. These shock regions–which can be seen in figure

3.11–are nonisentropic. Initially, our gas expands isentropically with M increasing,

and it overexpands since it has no knowledge about Pb. Then the shock waves appear

which recompress our gas so that it obeys the boundary conditions [12, 15]. The

shock waves at the sides of the expansion are called “Barrel Shock.” We also have

another shock wave normal to the propagation direction, called the “Mach Disk.”

It is named such because the gas very quickly decelerates and goes back to flowing

subsonically after it [12, 15]. This is–of course– for a general case. The dimensions

of our experimental setup are small enough to never have a Mach Disk within the

apparatus [12, 15].
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The location of the Mach disk is given by [12, 15]

(
xM
d

) = 0.67

√
(
P0

Pb
), (3.29)

where d is the nozzle diameter. The middle portion between the two barrel shocks

and the Mach Disk in figure 3.11 is called the zone of silence where the expansion

is isentropic with properties independent of Pb due to supersonic flow. Therefore,

since the dynamics of the gas are simpler there, our molecules to experiment on will

be taken from here by using a skimmer to just have the very center of the beam in

our experiment [12, 15]. There is one additional criteria that we need to take into

consideration. The flow in the zone of silence starts as a continuum flow. However, as

the gas expands, the number of collisions decrease and after some point the number

of collisions is not enough to keep the continuum flow. So, the gas transitions into

free molecular flow [12, 15]. Therefore, our experimental region should be located at

this free flow region of the zone of silence. The transition from continuum flow to free

molecular flow is marked as the “Quitting Surface” [12, 15].

Figure 3.12: A schematic of the free jet expansion with location of the quitting surface.
The skimmer should be placed after the quitting surface but before the Mach Disk
to allow us to have free flowing and non-interacting molecular beam [12, 15]. Figure
taken from [12], under Creative Commons Attribution (CC BY) license.
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The location of the quitting surface for diatomic gases is estimated by [12, 15]

xQS ≈ d
( S∞

3.606

√
2

γ

) 1
γ−1

, (3.30)

where S∞ is the terminal velocity ratio of our gas. It is approximated to 10% by

[12, 15]

S∞ = 5.4(P0d)0.32. (3.31)

In both the equation 3.30 and 3.31, P0 is in torr and d is in cm.

The existence of shock waves within our apparatus might be worrisome, as they

can easily affect the dynamics of our gas. However, the width of the Barrel shock

and the Mach disk are given to ±25% respectively by 0.75xm, 0.5xM where xm is the

mean free path of the gas and xM is the location of the Mach Disk [12, 15]. To see

why we should not worry about Barrel shocks, let us use our own apparatus. We have

a system with Pb ≈ 10−6 torr and P0 ≈ 1034 torr (20 psi absolute). So, the mean

free path upstream the Mach disk is about xm ≈ 10.94 meters (Calculation can be

found in Appendix A). Therefore, if we have a small enough apparatus, there simply

is not enough volume for a shock wave, therefore, we have smooth transitions without

Barrel shocks [12, 15]. One final point of worry might be the shock waves created by

the molecules that bounce off from the skimmer. However, using the same reasoning

as above with low gas density and high shock wave thickness we can also ignore the

presence of “skimmer shock waves” provided that our experimental setup is compact

enough [12, 15]. The actual design parameters can be found in the following chapter

when we discuss the construction of the apparatus.

Finally, with the design parameters we have and using [15] we find that at the

skimmer we should have a temperature of 2.8 K and 1.24 K in the ionization region.

(which are at a distance of 0.052 and 0.142 meters from the valve, respectively.)
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Chapter 4

Construction of the Apparatus

4.1 Overview of the Entire Apparatus

We will examine the apparatus in four sections mostly following the path of our gas

in the setup: Gas Injection and Skimmer, Ionization and WML Acceleration Stage,

and Einzel Lens and Drift Tube/MCP. Finally, we will show our simulations show-

ing that the apparatus should function as intended with time spacing, space/optical

focusing in mind. The full apparatus is shown in figure 4.1:
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Figure 4.1: CAD drawing of the experimental setup. This is how the assembly looks
when all the parts are assembled. Additional detailed sections can be found in the
exposition in subsections below. As a scale indicator, the large flange on the top is
6” in diameter.

4.1.1 Gas Injection and Skimmer

Neutral oxygen gas at room temperature is pulsed to the UHV via our pulsed

valve. It is a Parker Miniature High Speed High Vacuum Dispense solenoid valve

with a 0.02” aperture and conical nozzle. It is mounted on a 2 3/4” CF flange which

itself is mounted on a Kimball Physics 2.75” Spherical Cube. For the actual pulsing,

a circuit by Ye group at CU Boulder is used [12].
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Figure 4.2: Picture of the gas injection and skimmer portion of the apparatus. Spheri-
cal cube is used to maximize volume whilst minimizing the surface area of the chamber
[36].

Figure 4.3: Cross-section schematic of the old gas injection and skimmer assembly
[12]. The very close presence of the walls to the central line of the gas can lead to the
gas bouncing back off the wall and heating the center of the beam [4].

In a previous iteration of the experiment, instead of a spherical cube, we had a

4-way reducing cross with 6.0/2.75” ODs and our pulsed valve was mounted on the

2.75” side. The skimmer was mounted on the 2.75” CF flange on the other side and
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stretched out to the side of the pulsed valve [12]. This is illustrated in figure 4.3.

Initially, we were getting ions roughly at room temperature with this setup. There-

fore, this caused us to worry about a potential gas reflection interfering with the

center of the beam, thereby heating it. To prevent this, we changed to the 2.75”

Spherical cube whose walls are much further away from the center of the gas beam

[36]. However, this required us to devise a new method to hold the skimmer. We

inserted a copper gasket with holes for skimmer placement, and clamped the skimmer

on it using screws. The entire skimmer assembly is attached to the seal to the next

chamber in place of a gasket. This is illustrated in figure 4.4:

Figure 4.4: Assembly pictures of the new skimmer holder. The placement grooves
for the skimmer to slide into can be seen in the top left. Skimmer in place without
clamping can be seen in top right. The finished assembly can be seen in bottom left
(front face) and bottom right (back face). The depth of the lip in the copper piece is
0.1 millimeters. The diameter of the copper piece is 0.05 meters.

Finally, the overall cross section of this portion of the apparatus can be seen in

figure 4.5:
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Figure 4.5: CAD model cross section of the gas injection portion of the assembly and
a real-life assembly picture. The pulsed valve is assembled at the place of the yellow
plastic cover.

4.1.2 Ionization and WML Acceleration Stage

The gas beam enters the main experimental chamber after the skimmer. We used

Kimball Physics’ 4.50” Spherical Square for the actual chamber. It has 6 CF Flange

mounting holes four of which are 2.75” and the other two are 4.50”. We already had

a HV Electrical Connector from Kurt J Lesker with 2.75” diameter from our previous

setup. The electrical feedthroughs are SHV connectors. Hence, we can safely apply

up to 5 kV to our electrodes. In this iteration of the experiment, the electrical

connections are made through the bottom using an in-vacuum insulated wire with

30 kV rating (Accu-Glass 112716). We have a 4.5” CF mounting hole in the bottom.

Therefore, we added a 4.5” to 2.75” zero length reducer from Kurt J Lesker.

The gas beam arrives at the point of ionization–roughly mid distance between the

first two plates of WML configuration–with a diameter of ≈ 1.4 mm. The distance

between the skimmer and the ionization point is ≈ 142 mm. Furthermore, this is

most likely after the Quitting Surface and definitely before the Mach Disk since the

Quitting Surface is at a distance between 18 and 2 cm but towards 2 cm. Also, the

Mach Disk is at ≈ 294 cm [12]. These estimations can be found in appendix D.
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For the parallel plates, we decided to use Kimball Physics’ 7x7 C Series Stainless

Steel rectangular blank plates for the bottom plate of the WML configuration, and

7x7 C Series Stainless Steel rectangular plate with 1” diameter hole for the middle

and top plates. The distance between these plates are determined mainly by our need

to have a good uniform electric field and the diameter of the gas beam reaching the

middle of the chamber. Therefore, by putting an error margin to our estimations

of the gas beam diameter and due to the readily available ceramic spacers’ size, we

decided to have a space separation of 0.76 cm (0.3 inches). As we will see shortly, we

can still find solutions to the time spacing and space focusing equations while setting

the plate-to-plate distance to 0.76 cm [16].

The main support structure holding the plates and the einzel lens in place are C

series alumina tubings from Kimball Physics eV Parts. These are friction fitted into

appropriate sized holes drilled on the 4.5” to 2.5” zero length reducer. We also drilled

4 tapped holes to which we insert additional stainless steel pins that we designed.

Then, to hold the entire assembly in place (i.e. to prevent the alumina tubings to

slip out of their friction fit), the tubings are clamped to the stainless steel pins using

Kimball Physics’ evParts Screw Clamp Assemblies size 7.

We used C series alumina and stainless steel spacers to properly position the parts

in place. They just slip onto the alumina tubings. After the WML stage, we put four

springs (Kimball Physics evParts C Series Compression Springs), one on each tubing,

compressed them and put lock rings on top to ensure that the parts are held in place

tightly.
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Figure 4.6: CAD Drawing of the electrode assembly. The assembly is held in place
using C series alumina tubing, and part positioning is achieved by using alumina and
stainless steel C series spacers of various lengths. As a length scale, long Einzel lens
electrodes’ height is 7.62 cm.
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Finding Electrode Voltages

Again, we would like to make the approximation from the Sec. 3.2.2 that U0 ≈ 0 J.

Therefore, we need to accelerate the ions through a big enough electric field that their

initial thermal energies are comparatively small [16]. Our labs previous calculations

about the transverse beam speed has the upper bound of≈ 739 m/s which corresponds

to a kinetic energy of U0 ≈ 0.01 eV, using the classical equation for kinetic energy

[4, 12]. Therefore, if we accelerate the ions through 1 − 2 kV, we should be able to

reasonably apply U0 ≈ 0J. Our current electronics can handle up to 2kV, which is

why we cannot go above it.

With this approximation and assuming that our parallel plates act as parallel plate

capacitors, we have (following from equations 2.6, 2.9 and with the replacement of

s0 = s
2
) [16]:

k0 =
Va + Vb
Va − Vb

, (4.1)

D = sk
3
2
0

[
1− (

2

k0 +
√
k0

)

]
. (4.2)

In our apparatus, we have D = 33.1 cm (13.03 inches), which is the distance

between the MCP and the last plate of the WML configuration. Solving for k0 in

equation (4.2), we get (with s = 0.76 cm) k0 ≈ 13.422 which satisfies the maximality

condition of equation 2.11. Therefore, using equation (4.1) and setting Vb = 1500 V,

we get Va ≈ 1741 V satisfying our U0 ≈ 0J approximation. The final plate in the

WML configuration is set to Vc = 0 V to have a field free drift tube [16].

4.1.3 Einzel Lens and Drift Tube/MCP

After the ionization and WML region, the ions enter the drift tube from Kurt J

Lesker that has a 4.5” diameter . One end of the tube is attached to the ionization
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Table 4.1: Dimensions of WML along with Einzel Lens in inches and centimeters.

s(Wiley-McLaren) 0.3 inches 0.76 cm
d(Wiley-McLaren) 0.3 inches 0.76 cm
D(Wiley-McLaren) 13.03 inches 33.1 cm

g(Einzel Lens) 0.15 inches 0.4 cm

D
′
(Einzel Lens) 1.5 inches 3.8 cm

Einzel Lens Middle Electrode Height 0.6 inches 1.52 cm
Einzel Lens Outer Electrode Height 3.0 inches 7.62 cm

Table 4.2: Recommended voltage setting for the apparatus (pre-experiment), includ-
ing the back,middle,front plates of Wiley-McLaren configuration and middle, outer
electrodes of the Einzel Lens.

Back Plate(Wiley-McLaren) 1741 V
Middle Plate(Wiley-McLaren) 1500 V
Front Plate(Wiley-McLaren) 0 V

Middle Electrode(Einzel Lens) 1040 V
Outer Electrodes(Einzel Lens) 0 V

region and the other end is attached to a 6.00” to 4.5” conical reducer from Kurt J

Lesker. Finally, the MCP is attached to the conical reducer, which seals the appa-

ratus. The Einzel lens can be seen in figure 4.6. The main cylindrical electrodes are

made using Stainless Steel Cylinders with 1.5” diameter from Kimball Physics. The

outer two electrodes measure 7.62 cm (3 inches) in length whilst the inner electrode

measures 1.52 cm (0.6 inches).

In order to hold the electrodes in place, we use 3 Kimball Physics C Series 7x7

Rectangular plates with 1.5” diameter cut-out. The electrodes just slide in and then

are spot welded to the plates with the help of Kimball Physics’ eV Parts Wire Rings.

To achieve the correct spacing between the electrodes, we had to spot weld at the

correct position. Therefore, we designed and used an alignment jig (see fig. 4.8):
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Figure 4.7: Picture of the assembly of the WML Configuration portion of the exper-
imental apparatus, before the attachment of the Einzel lens portion to its top.

Figure 4.8: Picture of the assembly of the Einzel lens alignment jig with one of the
outer Einzel lens electrode inserted into the jig. There are 4 holes in jig’s base plate
to allow the insertion of four alumina rods.
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These plates are given a radius by cutting their corners, to allow them to fit inside

the tube that forms the vacuum chamber, which has an inner diameter of ≈ 6 cm

(2.5 inches) from Kurt J Lesker. Then, we use four C series alumina tubings to hold

them in place, as can be seen from figure 4.6. These alumina tubings are attached

to another C series 7x7 rectangular plate with 3.8 cm (1.5 inches) cutout. That final

plate is attached to the same assembly that holds the WML configuration in place.

The distance between the einzel lens electrodes–which is 0.38 cm–is achieved by using

Stainless Steel and Alumina C series spacers (from Kimball Physics eV Parts) cut to

appropriate lengths. Finally, to make sure that the assembly is held in place tightly,

we put another compression spring and lockring after the last einzel lens electrode

towards the MCP. We also put a lockring before the bottom einzel lens electrode.

These make sure that the alumina tubings do not slide out, and that they hold the

lens tightly.

Finding Einzel Lens Dimensions and Electrode Voltages

In order to find the Einzel Lens’ dimensions and voltages, we are going to use the

parameters already calculated in [35]. We will be constructing our einzel lens with

g

D′
= 0.1 as this is a typical parameter for lenses given by [33–35]. Here, g is the

distance between the lens electrodes and D
′

is the diameter of the electrodes (see fig.

3.1). Therefore, since we have D
′

= 3.81 cm (1.5 inches), our lens separation should

be g = 0.38 cm (0.15 inches). Now, remember that if our lens is not too strong, we

can define a focal length f which satisfies the classical lens equation (2.29) where Dobj

is the object distance and Dim is the image distance [33–35]. In our case, we measure

Dobj ≈ 10.2 cm (4 inches) and Dim ≈ 24.1 cm (9.5 inches) where Dobj is the distance

from the end of WML to the middle of the middle electrode and Q is the distance

between MCP and the middle of the middle electrode. Therefore, we need f ≈ 7.2 cm

(2.82 inches). So, we need f

D′
≈ 1.877. Also, using A

D′
= 0.5 where A is the distance
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between the midpoint of the spaces between outer and inner electrodes, we find that

the length of our middle electrode needs to be D
′

middle = 1.52 cm (0.6 inches) [35].

Therefore, looking at the table in [35], we would like Vinner electrode

Vouter electrode
to be between 5

and 6.

However, remember that we want the outer electrodes to be at ground, to have a

field-free drift tube. Therefore, we will estimate first by guessing a suitable middle

electrode voltage (i.e. high enough to give the ions an ample “kick” towards the

center), which determines the outer electrode voltages. Then, we will shift both

voltages until the outer ones’ voltages are at ground.

4.2 Simulations of the Apparatus

We used the computer program SimION to simulate the ToF-MS. SimION is a

charged particle trajectory simulation program. It works by dividing the given volume

of interest into small cubes, and then solves the Laplace’s equation iteratively by

treating the cubes either as an electrode or as a non-electrode point decided by the

user [37]. We will be simulating our setup using cubes of side length 0.5 mm. The

data for each cube is stored in RAM during simulation. Therefore, a decrease of 2 in

side length causes an increase of 8 fold in RAM usage. It also significantly increases

the amount of computations needed to perform the simulation [37]. Therefore, we

had to find a side length that optimized simulation time and accuracy.

4.2.1 Time Spacing and Space Focusing Simulations

First, let us simulate the setup only using the WML configuration (i.e. all Einzel

lens electrodes are at ground) to see if oxygen molecular ions and oxygen atomic

ions are separated in time. Again, the WML electrodes have the following voltage
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configuration: back electrode at 1741 V, the middle electrode at 1500 V and the front

electrode at 0 V. Fig. 4.9 is a SimION picture of a simulation with 60,000 ions half

of which is oxygen molecular ion and the other half is oxygen atomic ion.

Figure 4.9: Simulation of ion trajectories with Einzel lens electrodes at ground. We
see that all the ions hit the MCP (detector). The CAD image is given to the right to
show the placement of electrodes and the detector.

In fig. 4.9, the ions are created in the middle of the first two electrodes. Fur-

thermore, they are given the highest standard deviation (in creation position) in the

direction that laser comes from and smaller standard deviations in position in the

other directions. They are given a velocity of 739 m/s. We first collected data for

ions’ arrival times to the detector assuming that all ions travel directly to the right

of the figure 4.9 at the time of ionization. When we plot the data in a histogram, we

get:
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Figure 4.10: Histogram of the arrival times of our ions, using the voltages in table 4.2
with middle Einzel lens electrode grounded. We clearly see that the molecular and
atomic ions are very well separated in time.

Notice that this configuration covers the space focusing case since the ions are given

a standard deviation about the approximate midpoint of the first two electrodes [16].

Now, for the time spacing portion, let us simulate the worst case where the oxygen

molecular ion is moving straight towards the MCP and the oxygen atomic ion is

moving straight away from the MCP. The simulation yields the histogram in fig.

4.11:
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Figure 4.11: Histogram of the arrival times of our ions when the molecular ion moves
directly towards the detector and the atomic ion moves directly away from it. We
clearly see that the molecular and atomic ions are very well separated in time. The
voltages used are given in table 4.2. However, the Einzel lens is grounded for this
simulation.

Therefore, time spacing is also achieved, at least in simulation. Finally, we sim-

ulate the setup using the Einzel lens to see whether we can focus ions geomet-

rically. We start our estimates by assigning the middle Einzel lens a voltage of

Vinner electrode = 850 V which is not as strong compared to the acceleration stage,

hence our standard lens equation should still apply. Assuming we have Vinner electrode

Vouter electrode
≈

5.5, we have Vouter electrode ≈ 155 V. Shifting both, we get Vinner electrode = 695 V

and Vouter electrode = 0 V. To achieve the maximal focusing, we simulated the setup

with many different values for Vinner electrode. The most focusing was achieved with

Vinner electrode ≈ 1040 V. Finally, to make sure that the Einzel lens indeed worked as

an analogue to a converging lens, we simulated the setup with Vinner electrode = 1500 V.

The results of these simulations can be seen in figure 4.12:
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Figure 4.12: SimION simulations of our apparatus with WML electrodes’ configura-
tion given in table 4.2. In all three simulations, the outer Einzel lens electrodes are
grounded. The inner Einzel lens electrode is at 695 V, 1040 V and 1500 V from left
to right, respectively. Indeed, our lens acts as a converging lens in the simulations.
These simulations also take into account the Coulomb repulsion effects.

With all the simulations giving positive results, we now proceed to the analysis of

our experimental data.
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Chapter 5

Apparatus Data and Discussion

Before moving on to using our apparatus in our experiments, we wanted to make

sure that it works as expected. Therefore, we conducted a few mini-experiments

focusing on one key component of the apparatus in each one: Einzel Lens Optical

Focusing of the Ions, Scaling of the Time-of-Flight with Grid Voltage given a constant

Grid/Push Voltage Ratio, and Space-Focusing.

5.1 Does the Einzel Lens Focus?

5.1.1 Data and Acquisition Method

Our first task following the assembly of the apparatus was to see whether we could

get any ions in the first place. After detecting some ions, we went on to test whether

we could get our Einzel Lens to optically-focus our ions. So, we sat at 1744 V for

the push plate, 1510 V for the grid plate and we gradually varied the Einzel Lens

voltage while firing the laser 250 times at each data point to see how many of the

shots had ions. If the Einzel Lens could spatially focus the ions, we expected to see

low ion count when the lens is at ground which would increase up to some voltage and

decrease after that. The data we obtained demonstrated our point almost perfectly
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and is given in fig. 5.1:
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Figure 5.1: Optical Focusing Demonstration Graph of the Einzel Lens with Push
Plate at 1744 V calibrated and Grid Plate at 1510 V calibrated. The blue line is the
interpolation (4th order) of the data points. At each data point, we fired the laser
250 times and kept track of how many shots had ions detected at the MCP.

5.1.2 Discussion of Einzel Lens Focusing Data

Overall, the data shows that we can focus the ions spatially and the Einzel Lens

behaves as expected, at least qualitatively. The main disagreement between our sim-

ulations and the experiment was the optimal voltage of the Einzel Lens for maximum

focusing. In the simulations, we had an optimal voltage around 1040 V, whilst the

data shows an optimality around 1600−1700 V. There may be–at least–three reasons

for this. First, we might have underestimated the gas’ speed at the point of ionization.

If the gas had a higher initial speed, we would need more of a “kick” given by the

Einzel Lens to alter the trajectory of the ions. Second, the ions may not be exiting the

acceleration region parallel to the MCP-Push Plate axis. More descriptively, the ions

may be exiting the acceleration region in a cone whose apex is the point of ionization.

So, perhaps, the parallel plate approximation does not hold very well. Since–in our

simulations where we determined the optimal Einzel lens voltage–the approximation

seemed to hold, it would make sense that the value found in simulations does not

agree with experimental results.
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Finally, we created the ions–in the simulations–in the middle of the region between

the push and grid plates (in all 3 axes), because the middle should be the point

where the parallel plate approximation holds the most. We will see in section 5.2.2

that changing the ionization position in the MCP-Push plate axis does not affect our

ability to get ions that much. Therefore, we might have created the ions not exactly

in the middle of the plane defined by the Push plate which would weaken the parallel

plate approximation. In the end, further investigation is needed since we may also

have any combination of these three effects or more, such as assembly tolerances.

Fortunately, it seems to be working. So, we are going to run at 1600− 1700 V rather

than track down the discrepancy, for the time being.

5.2 Does the Flight Time Scale as Expected?

5.2.1 TOF vs. Grid Voltage with Constant Voltage Ratio

After finding the optimal voltage for the voltage configuration with 1744 V push

plate and 1510 V grid plate, we sat at 1659 V for the Einzel lens. We then varied

the grid voltage while keeping grid-to-push-plate voltage ratio the same. We wanted

to see whether the time-of-arrival scales as expected by the Wiley-McLaren theory

given by eq. 3.5. The main reason to keep the grid-to-push-plate voltage ratio the

same is to have a Wiley-McLaren theory curve, which will be given by eq. 3.5.

Another way to see eq. 3.5 is as a function of (s, d,D,Es, Ed,mO2) with s, d,D,mO2

being constant. So, if we use random data points without the same ratio (i.e. without

writing Ed in terms of a constant multiple of Es or vice versa), we would have discrete

Wiley-McLaren theory points–to be precise, we would have a 3D graph–instead of a

curve.
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Before taking any data, we had to calibrate all the electrical time delays in our

experiment to record the actual time-of-flight. The main delay was the time between

the triggering of our oscilloscope and the laser actually firing. To measure this delay,

we ran a mini-experiment where we clipped the laser on the push electrode without

pulsing oxygen. Then, we took data when all the electrodes were on. We saw a big

signal in the oscilloscope trace which were hydrogen ions that we ionized with our

laser since the plate outgasses hydrogen [4]. Finally, we grounded all of the electrodes

and looked whether we had any signal. We expected to still see a big signal in the

oscilloscope since the scattered light from the push plate would most likely saturate

the MCP. Indeed, we saw a signal at ≈ 380 ns which gave our constant time offset

for all the data points. The oscilloscope trace for this experiment is given in fig. 5.2:

Figure 5.2: The oscilloscope trace corresponding to our experiment to determine the
time interval between the triggering of our oscilloscope and our laser actually firing.
The yellow trace shows the MCP signal accumulated from several laser shots. The
first distribution is from scattered UV light, which indicates the time the ions would
be created. The second distribution is due to actual hydrogen ions ionized due to
outgassing of our plate [4].
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The results of our experiment after this delay correction are given in fig. 5.3:

1000 1500 2000 2500 3000
2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

grid voltage (V)

ar
ri
va
l
ti
m
e
(μ
s)

Wiley-McLaren Theory

Experimental Data

Simulation

Figure 5.3: Time-of-Flight data’s scaling depending on the grid voltage with the same
grid/push voltage ratio of ≈ 0.867. The blue curve is the Wiley-McLaren theory of
eq. 3.5 without accounting for the Einzel lens’ effect on the Time-of-Flight. We have
near perfect agreement with the SIMION simulation–green dots on the figure–where
the Einzel lens is included in the simulation, except for the first data point. This
is expected since the Einzel lens contribution constitutes the largest portion in the
overall arrival time for this data-point. So, we do not expect an agreement with the
basic Wiley-McLaren theory [4]. Furthermore, the simulation did not even record an
ion arriving at the detector for the first data point.

Discussion:

First of all, the uncertainties on the horizontal axis are our estimates on how precise

our voltage sources can be. The vertical uncertainties are obtained by looking at the

ends of our ion distributions in the oscilloscope traces. Our data did not agree with

the Wiley-McLaren theory. However, this is expected due to the Einzel lens [4].

Even though the Einzel lens does not change the overall kinetic energy of the ions

before and after passing through the lens, their kinetic energy is still different (i.e.

slower) inside the lens [4, 33–35]. Furthermore, in our case, the ions slow down for

the first half of their traversal through the Einzel Lens and they get accelerated again
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for the second half. Therefore, the ions will take longer to reach the detector when

the Einzel Lens is not grounded, compared to when it is grounded [4, 33–35].

To correct for this time difference, we simulated each experiment with Einzel lens

on, using SimION. After this, we compared the simulation results with the experimen-

tal data, which generally gave good agreement. For instance, one of our simulations

for the 1744 V Push plate, 1510 V grid gave a time-of-flight of ≈ 3.74 µs for when

Einzel lens was grounded and ≈ 3.90 µs when the Einzel Lens was at 1659 V. This

shows that we have to take all the electric fields into consideration. The Wiley-

McLaren theory cannot predict the correct result exactly, because it does not know

about the existence of other fields in our experiment [4].

After this correction, we had near perfect agreement–with the simulation–for all

data points except the very first from left. Our laser UV power was a bit lower for

this data point than usual. Furthermore, the arrival time for this point has a very

large contribution from the Einzel lens such that we do not really expect the basic

Wiley-McLaren theory to match it [4]. Also, if we look at the oscilloscope trace for

this data point, we can hardly say that we have a distribution at all. Therefore, we

do not think it is a reliable data point.

5.2.2 TOF vs. Vertical Position of Ionization

As a final experiment to run, we decided to measure the time-of-arrival of our ions

based on the vertical position of ionization (i.e. We moved the laser up and down in

the MCP-Push plate axis). If we had implemented our apparatus correctly, we should

have space-focusing. So, our data points for this experiment should agree with the

Wiley-McLaren theory–in terms of scaling, since Wiley-McLaren ignores the Einzel

lens–given by eq. 3.5. We should also have k0 > 3 as given in eq. 3.11. So, we sat

at 1659 V for the Einzel Lens (calibrated), 1744 V for the Push Plate (calibrated)
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and 1510 V for the grid (calibrated). After this first experiment, we ran it again with

2019 V for the Push Plate while keeping the grid and Einzel Lens voltage the same,

to see if space-focusing gets worse with a non-optimal voltage configuration. Lastly,

we changed the push plate voltage to 1611 V (calibrated) and ran the experiment one

last time.

These data include calibrations of the actual voltages relative to the dial reading

on our voltage supplies (see Appendix E); we also believe we can reproducibly set the

voltages to within 1%. The results are given in figs. 5.4, 5.5 and 5.6, respectively.

-3 -2 -1 0 1 2 3
3.3

3.4

3.5

3.6

3.7

3.8

3.9

distance from mid-plate (mm)

ar
riv
al
tim
e
(μ
s)

Wiley-McLaren Theory

Simulation, Push at 1744V
Simulation, Push at 1734V
Experimental Data

Figure 5.4: Time-of-Flight data’s scaling depending on the vertical position of the
laser (i.e. in the MCP-Push Plate axis) with push plate at 1744 V and grid at 1510 V.
Our data points do not agree with the Wiley-McLaren theory, which does not account
for the effect of the Einzel lens. However, we have great agreement with the simulation
where the push plate is at 1734 V. Considering that the nominal value on the dial was
1730 V and we did the voltage calibration after the experiment, it seems reasonable
that the precision of our voltage source is not infinite (≈ 1% precision). The Einzel
lens is at 1659 V. Positive distances are closer to push plate; negative are closer to
grid plate. Zero point is the middle between the two plates.
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Figure 5.5: Time-of-Flight data’s scaling depending on the vertical position of the
laser (i.e. in the MCP-Push Plate axis) with push plate at 2019 V and grid at 1510 V.
Our data points do not agree with the Wiley-McLaren theory, which does not account
for the effect of the Einzel lens. However, we have great agreement with the simulation
where the push plate is at 2000 V. Considering that the nominal value on the dial was
2000 V and we did the voltage calibration after the experiment, it seems reasonable
that the precision of our voltage source is not infinite (≈ 1% precision). The Einzel
lens is at 1659 V. Positive distances are closer to push plate; negative are closer to
grid plate. Zero point is the middle between the two plates.
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Figure 5.6: Time-of-Flight data’s scaling depending on the vertical position of the
laser (i.e. in the MCP-Push Plate axis) with push plate at 1611 V and grid at 1510 V.
Our data points do not agree with the Wiley-McLaren theory, which does not account
for the effect of the Einzel lens. However, we have great agreement with the simulation
where the push plate is at 1588 V. Considering that the nominal value on the dial was
1600 V and we did the voltage calibration after the experiment, it seems reasonable
that the precision of our voltage source is not infinite (≈ 1% precision). The Einzel
Lens is at 1659 V. Positive distances are closer to push plate; negative are closer to
grid plate. Zero point is the middle between the two plates.

Discussion

None of the data points in our experiments in sec. 5.2.2 agree with the Wiley-

McLaren theory within the given uncertainties. This is expected since Wiley-McLaren

theory does not take the Einzel lens into account. We believe that the reason for

these disagreements might be the fact that the Push and Grid voltages were not

exactly what we thought they were. We had done the calibration of the electrode

voltages after conducting all these experiments. Even though we should be close to

the calibration voltages given in table E.1, our voltage sources are not infinitely precise

(≈ 1% precision). For instance, if at the time we did the experiment the push plate

were −12 V below the nominal value (1600 V) instead of +11 V for the experiment

in fig. 5.6, our data would be in agreement with our SimION simulations with Einzel
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lens included. For the experiment in fig. 5.4 a similar situation applies, where we

would be in agreement with our simulations if we were +4 V above the nominal value

(1730 V) of the push plate instead of +14 V. Finally, for the experiment in fig. 5.5 we

would be in agreement with our simulations if we were actually right at the nominal

value (2000 V) of the push plate instead of our calibration value of 2019 V.

All of these corrections are within 1% of the nominal values of the push plate

voltage at the time. Therefore, we think that the actual calibrated voltages at the

time of the experiment were indeed different–due to the finite precision (≈ 1%) of our

voltage source–than when we made the calibration, resolving the problem. Calibration

voltage samples can be found in table E.1.

Comparison

As a last remark before discussing future directions for our experiment, notice that

Wiley-McLaren theory curve, SIMION simulations and actual data all show that the

vertical position of ionization almost does not matter for the configuration we chose

for our experiment (see fig. 5.4). Lastly, we can clearly see that space-focusing gets

worse for the other configurations in fig. 5.5 and fig. 5.6, as expected. Therefore, the

Wiley-McLaren theory correctly predicts the voltage ratio needed for space-focusing,

and we have chosen the correct voltage ratio for our experiment. The time offset

from the Einzel lens is a minor issue that needs to be considered to make sense of

the absolute arrival times. Fortunately, it does not affect the essential part of the

Wiley-McLaren theory for us, the voltage ratio needed for optimal space-focusing [4].
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Chapter 6

Future Directions

As we are near the end of the thesis, we should think about how our work will

integrate into our short-term goal of measuring the transition frequencies in the

X2Πg state of O+
2 with greater precision, and into our long-term goal of increasing

the precision in the measurement of µ̇
µ

(the change-in-time of proton-to-electron mass

ratio µ). We will first discuss the short-term improvements needed in the apparatus

and then the longer-term goals and improvements necessary.

6.1 Short-Term Goals

Our main short-term goal is to measure the transition energies in the X2Πg state

of O+
2 with better precision than the current values. To achieve this, we have at least

five steps we need to take. Our UV power has occasional drops, which will affect our

signal-to-noise in the best case and ruin a measurement if the power drops during

an experiment, in the worst case. Therefore, laser power stabilization is important.

Another issue is the duration of the gas pulse. We will not have many ions if we keep

the gas pulse very short, which affects our signal-to-noise. If on the other hand, we

have a very long gas pulse, then the interactions between particles in the experimental

region heat the gas. So, we should find an optimal gas pulse duration.
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Additionally, we should find an optimal delay between the firing of the gas and

firing of our laser. If we shoot our laser too early, we miss the gas beam entirely.

If on the other hand we fire the laser too late, we either miss the beam and ionize

room-temperature background gas or we only catch the “tail” of the gas, which is

hotter than its “head”. Additionally, in the previous sections we saw that the Einzel

Lens’ optimal focusing voltage was higher than the one we found in our SimION

simulations. We had postulated that an initial speed higher than our estimate might

cause this disagreement. Therefore, we should re-estimate the gas speed and find a

method to verify it. Furthermore, we should verify that the gas beam intersects the

line through the intersection of the two diagonals of our push plate and of our grid

plate. If the beam is not passing through that line, then we are not ionizing the gas

exactly in the middle of the finite plane defined by the push plate, which worsens

our parallel plate approximation. In turn, this might contribute to the discrepancy

between the experimental and simulated optimal voltage for the Einzel lens. These

works are already underway in the lab.

Finally, we should map out the REMPI spectrum, which we have done recently.

Then, before starting our experiment, we choose a peak of this REMPI spectrum (i.e.

we choose a rotational state in the neutral molecular Rydberg d state) [4, 11, 12, 14].

One of our REMPI spectra mappings is given in fig. 6.1.
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Figure 6.1: One of the latest REMPI spectra of our oxygen gas. We will choose a
rotational states in the neutral molecular Rydberg d state by choosing a peak in the
REMPI spectrum [11, 12, 14]. We stopped the scan around 16629 cm−1 due to power
drop-outs of our UV laser.

Our ion count should increase considerably to give us much better signal-to-noise af-

ter these improvements [4]. Therefore, for our last short-term improvement, we should

measure some of the transition frequencies in the X2Πg state of O+
2 to see if we can im-

prove their precision. As a first measurement, we will start with |O+
2 X2Πg, ν = 0〉 →

|O+
2 X2Πg, ν = 16〉. We can move on to measuring other rovibrational transitions

from the electronic ground state if we can successfully measure this transition fre-

quency and improve its precision.

6.2 Longer-Term Goals

The ultimate goal of increasing the precision of µ̇
µ

is far enough that every estimate

we make now will be void due to the emergence of unforeseen experimental/theoretical

problems. Generally speaking, we need a trap to trap our ions after creation to

have longer probe times. Longer probe times will give us narrower Fourier line-

widths, which increase the precision in our measurements [4, 11, 12, 14]. We will also

integrate the trap with our ToF-MS since we can use the trap electrodes for ejection

too [4, 12, 14]. When we want to eject the ions from the trap, we first turn off the
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trap, then very quickly turn on the push/grid electrodes. This sends our ions in a

radially outwards trajectory towards the ToF-MS. We can even use the same voltage

configuration as is the case in this thesis [11, 12, 14]. Furthermore, we will change

from a pulsed two-photon laser to a CW laser, in order to have longer probe times

[11, 12, 14]. In the most optimal case, we would like our linewidth to be the same as

our probe pulse’s Fourier Transform [4, 11, 12, 14].

To specify, here is–roughly–how we will integrate our two setups: the ToF-MS and

the Linear Paul Trap (since we need the ToF-MS to measure µ̇
µ
, along with the Linear

Paul Trap). The gas pulse valve is in our current experiment, thus, taking the Linear

Paul Trap and putting it in our current setup is more feasible than doing the reverse.

Furthermore, after optimizing our parameters in our current setup, if we put the

ToF-MS in the Linear Paul Trap’s vacuum chamber, we will have to do all of them

again. This is because the path length of the gas would change. Additionally, the

sizes of the flanges in the current Linear Paul Trap setup is different than most of the

ones we have in the ToF-MS. The size of the actual Linear Paul Trap is small enough

to fit in our ToF-MS setup [38]. So, it is a better choice to change the base of our

ToF-MS setup–where we currently have the push and grid plates–to accommodate

the Linear Paul Trap.

The support structure for the trap would likely involve either ≈ 4 new support rods

or more added length to our existing setup, which will require us to increase the length

of our drift tube. Furthermore, this may affect the optimal voltage needed in the

Einzel lens for maximal focusing. One additional problem will be the new electrical

connections we would need for supplying the potentials to the trap. Currently, all of

our high voltage SHV connections are occupied by the ToF-MS electrodes. Therefore,

we will have to buy a new high voltage SHV connector from Kurt J. Lesker (with

more connections on a single flange). Finally, since the existing ToF-MS setup will
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be farther away from the SHV connections than their original positions, we will have

to rewire the current electrodes.

For the closing remarks, we should think about the possible impact of our research

once completed. Perhaps our new measurement of µ̇
µ

will be one of the keys to

understand physics beyond the Standard Model, and it will open a new door to

molecular clocks whose precision outmatches the current standard. On the negative

side, we may also only end up tightening the bound on µ̇
µ
, which would mean even more

precise methods for measurement might be needed. In that case, perhaps, this new

molecular clock may be used in these more precise measurements of µ̇
µ
. Fortunately,

tightening the limit can also allow us to discredit certain extensions to the Standard

Model and to shrink the parameter space for new physics, which will ease future

physicists’ trouble for extending our understanding of the Universe [4].
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Appendix A

Barrel Shock Width Calculations

Here, we show that the mean free path around the Mach disk is λM ≈ 10.94 meters.

Since the width of the Barrel Shock is proportional to λM , this shows that we will

not have any shock waves with a small enough apparatus. All of the equations in this

appendix are taken from [12, 15].

A.1 Calculation

In our apparatus, we have P0 ≈ 1034 torr (20 psi absolute) and Pb ≈ 10−6 torr.

Remember that the location of the Mach disk is given by:

xM
d
∼ 0.67

√
P0

Pb
. (A.1)

We have d = 0.02 inches. Therefore, xM = 0.67 × 0.02 × 0.0254 ×
√

1034
10−6 ≈ 10.944

meters. Since we have O2, our gamma (assuming it is constant through the relevant

range) is γ = 7
5

= 1.40. Now, the Mach number at position x is given by:

A(
x− x0

d
)γ−1 −

1
2
(γ+1
γ−1

)

A(x−x0
d

)γ−1
. (A.2)
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In our case, we have x0
d

= 0.40. Therefore, we have x0 = 0.40×0.02×0.0254 ≈ 0.0002

meters. So, our Mach number at the Mach disk location isM(xM) ≈ 3.65(10.944−0.0002
0.02×0.0254

)
2
5−

3
3.65×3.65( 10.944−0.0002

0.02×0.0254
)

2
5 ≈ 197.510. Additionally, remember that we have:

( T
T0

)
=

1

1 + γ−1
2
M2

. (A.3)

Therefore, at the location of Mach disk, we have: ( T
T0

)M ≈ (1 + (197.510)2

5
)−1 ≈

0.000128. Remembering the equality of:

( n
n0

)
=
( T
T0

) 1
γ−1

, (A.4)

we have ( n
n0

)M ≈ (0.000128)
5
2 ≈ 1.859×10−10. Using the standard equation P = nRT

(with P0,n0,T0) with T0 ≈ 300 K, we find n0 ≈ 3.329 × 1025 m−3. The source mean

free path is given by:

λ0 ∼
[
5.3n0

( C6

kT0

) 1
3
]−1

, (A.5)

with C6

k
= 8.31 × 10−55 K.m6 for O2. Therefore, the source mean free path is λ0 ∼

1

5.3×3.329×1025

(
8.31×10−55

300

) 1
3
≈ 4.035 × 10−8 meters. Finally, the Mach disk mean free

path is given by:

λM = λ0

(n0

n

)
M

3

√( T
T0

)
M
. (A.6)

So, we have λM ≈ 4.035 × 10−8 × (1.859 × 10−10)−1 × 3
√

0.000128 ≈ 10.9 meters.

Consequently, since the Barrel Shock wave width is proportional to λM , our apparatus

with a length scale on the order of 1 meter cannot contain any barrel shock waves

[12, 15].
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Appendix B

Values of Molecular Constants

Used For Spectroscopic Data

All of the spectroscopic constants used in the table B.1 are taken from [29–31].

The Tν in levels ν = 0, 1 are translated (by 97441 cm−1 given in [31]) so that the

transition wavelengths are referenced with respect to the ground vibrational state of

O+
2 . Constants for ν = 0, 1 are from [29, 31], ν = 2−12 are from [30] and ν = 13−38

are from [31].

Unless otherwise mentioned, all of the units in table B.1 are cm−1.
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ν Tν Aν Bν Dν Hν pν qν DAν

0 0 200.289 1.67996 5.22E-6 - 0.0153 0.00023 -
1 1884 199.700 1.66072 5.36E-6 - 0.0153 -3E-5 -
2 4662.33 199.0191 1.641295 5.41E-6 - 0.01756 0.000382 -
3 6469.7027 198.3736 1.622004 5.604E-6 - 0.01754 0.000214 -5.3E-5
4 8244.5209 197.6496 1.602269 5.495E-6 - 0.01724 0.000161 -2.06E-5
5 9986.7681 196.9182 1.582689 5.541E-6 - 0.01658 0.000101 -6.42E-5
6 11696.2739 196.1548 1.562978 5.5628E-6 - 0.01651 6.9E-5 -9.56E-5
7 13373.3399 195.3294 1.5431883 5.6296E-6 - 0.017186 0.0001295 -0.0001077
8 15017.8424 194.4656 1.5232907 5.6768E-6 5.5E-12 0.017028 0.0001196 -0.0001149
9 16629.7677 193.5646 1.5033193 5.7455E-6 1.11E-11 0.017053 0.0001325 -0.0001472
10 18209.0913 192.6152 1.4832262 5.8032E-6 1.141E-11 0.016968 0.0001264 -0.0001791
11 19755.7614 191.6055 1.463001 5.8588E-6 1.09E-11 0.016942 0.0001248 -0.0002049
12 21269.7034 190.5455 1.442621 5.8915E-6 - 0.01704 0.0001217 -0.0002408
13 21810 189.4 1.42 - - - - -
14 23258 188 1.4 - - - - -
15 24673 187 1.38 - - - - -
16 26056 185 1.36 - - - - -
17 27403 183.5 1.34 - - - - -
18 28715 183 1.32 - - - - -
19 29997 179.3 1.3 - - - - -
20 31245 182 1.28 - - - - -
21 32461 177 1.25 - - - - -
22 33634 174 1.25 - - - - -
23 34777 173 1.22 - - - - -
24 35885 169 1.19 - - - - -
25 36959 168 1.17 - - - - -
26 37995 165 1.17 - - - - -
27 38999 163 1.15 - - - - -
28 39964 161 1.13 - - - - -
29 40909 159 1.11 - - - - -
30 41815 155 1.1 - - - - -
31 42677 155 1.07 - - - - -
32 43505 150 1.04 - - - - -
33 44315 147 1.02 - - - - -
34 45055 146 1 - - - - -
35 45779 144 1.01 - - - - -
36 46480 141 0.98 - - - - -
37 47150 142 1 - - - - -
38 47779 141 0.95 - - - - -

Table B.1: Constants used by PGOPHER to calculate the transition wavelengths. Notice
that not all of these constants are used for every level. The ones used for a given vibrational
level depend on which ones the authors provided [29–31]. The ones not available are
notated with ”-.”
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Appendix C

Current Best Spectroscopic

Estimates For Rovibrational

Transitions in X2Πg state of O2
+

Jinitial Ωinitial Jfinal Ωfinal ∆E (cm−1) δ∆E (cm−1)

0.5 0.5 1.5 1.5 25860.9927 ≈ 5− 6

0.5 0.5 1.5 1.5 26057.9921 ≈ 5− 6

0.5 0.5 0.5 0.5 26063.0125 ≈ 5− 6

0.5 0.5 2.5 0.5 26049.7036 ≈ 5− 6

0.5 0.5 2.5 0.5 25852.5217 ≈ 5− 6

1.5 1.5 0.5 0.5 26067.0621 ≈ 5− 6

1.5 1.5 0.5 0.5 26249.4029 ≈ 5− 6

1.5 1.5 1.5 1.5 26062.0417 ≈ 5− 6

1.5 1.5 1.5 1.5 25865.0423 ≈ 5− 6

1.5 1.5 1.5 1.5 26244.3825 ≈ 5− 6

1.5 1.5 1.5 1.5 26047.3831 ≈ 5− 6
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1.5 1.5 2.5 0.5 26053.7532 ≈ 5− 6

1.5 1.5 2.5 0.5 25856.5713 ≈ 5− 6

1.5 1.5 2.5 0.5 26236.094 ≈ 5− 6

1.5 1.5 2.5 0.5 26038.9121 ≈ 5− 6

1.5 1.5 3.5 1.5 26042.0397 ≈ 5− 6

1.5 1.5 3.5 1.5 25844.7121 ≈ 5− 6

1.5 1.5 3.5 1.5 26224.3805 ≈ 5− 6

1.5 1.5 3.5 1.5 26027.0529 ≈ 5− 6

2.5 0.5 0.5 0.5 26073.8114 ≈ 5− 6

2.5 0.5 0.5 0.5 26256.2536 ≈ 5− 6

2.5 0.5 1.5 1.5 26068.791 ≈ 5− 6

2.5 0.5 1.5 1.5 25871.7916 ≈ 5− 6

2.5 0.5 1.5 1.5 26251.2332 ≈ 5− 6

2.5 0.5 1.5 1.5 26054.2338 ≈ 5− 6

2.5 0.5 2.5 0.5 26060.5025 ≈ 5− 6

2.5 0.5 2.5 0.5 25863.3206 ≈ 5− 6

2.5 0.5 2.5 0.5 26242.9447 ≈ 5− 6

2.5 0.5 2.5 0.5 26045.7628 ≈ 5− 6

2.5 0.5 3.5 1.5 26048.789 ≈ 5− 6

2.5 0.5 3.5 1.5 25851.4614 ≈ 5− 6

2.5 0.5 3.5 1.5 26231.2312 ≈ 5− 6

2.5 0.5 3.5 1.5 26033.9036 ≈ 5− 6

2.5 0.5 4.5 0.5 26033.8704 ≈ 5− 6

2.5 0.5 4.5 0.5 25836.2155 ≈ 5− 6

2.5 0.5 4.5 0.5 26216.3126 ≈ 5− 6

2.5 0.5 4.5 0.5 26018.6577 ≈ 5− 6
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3.5 1.5 1.5 1.5 26078.24 ≈ 5− 6

3.5 1.5 1.5 1.5 25881.2406 ≈ 5− 6

3.5 1.5 1.5 1.5 26260.8242 ≈ 5− 6

3.5 1.5 1.5 1.5 26063.8248 ≈ 5− 6

3.5 1.5 2.5 0.5 26069.9515 ≈ 5− 6

3.5 1.5 2.5 0.5 25872.7696 ≈ 5− 6

3.5 1.5 2.5 0.5 26252.5357 ≈ 5− 6

3.5 1.5 2.5 0.5 26055.3538 ≈ 5− 6

3.5 1.5 3.5 1.5 26058.238 ≈ 5− 6

3.5 1.5 3.5 1.5 25860.9104 ≈ 5− 6

3.5 1.5 3.5 1.5 26240.8222 ≈ 5− 6

3.5 1.5 3.5 1.5 26043.4946 ≈ 5− 6

3.5 1.5 4.5 0.5 26043.3194 ≈ 5− 6

3.5 1.5 4.5 0.5 25845.6645 ≈ 5− 6

3.5 1.5 4.5 0.5 26225.9036 ≈ 5− 6

3.5 1.5 4.5 0.5 26028.2487 ≈ 5− 6

3.5 1.5 5.5 1.5 26024.9146 ≈ 5− 6

3.5 1.5 5.5 1.5 25827.0307 ≈ 5− 6

3.5 1.5 5.5 1.5 26207.4988 ≈ 5− 6

3.5 1.5 5.5 1.5 26009.6149 ≈ 5− 6

Table C.1: Best current estimates for rovibrational transition energies of our clock
transition |X2Πg O+

2 , ν = 0〉 → |X2Πg O+
2 , ν = 16〉. In this table, we limited the

initial Jinitial to be between 1
2

and 7
2
, inclusive. The uncertainties are estimated using

Tν [11, 17–20, 29–31]. We have the same uncertainty in all of these data since the
uncertainty is correlated in the sense that the relative positions are very precise. It
is simply an overall offset that is not well known [11, 12, 14, 29–31]. The units of
∆E and δ∆E are cm−1. The other constants are unitless. These calculations are done
using PGOPHER with constants reported in Appendix B [17–20, 29–31].
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Appendix D

Gas Beam Diameter, Quitting

Surface and Mach Disk

Estimations

In the previous iteration of the experiment, we had treated the gas source as a point

source expanding in a conical fashion with the edges determined by the skimmer to

estimate the diameter of the gas beam. Then, using similar triangles we had estimated

the beam diameter to be ≈ 1mm. We had measured this by shining a light through

valve hole and using a ruler roughly in the middle of the chamber. The results were

in agreement with our estimations. So, we used the same method for beam size

estimation in this iteration. Illustration of the calculation is given in fig. D.1:
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Figure D.1: Schematic of the method to estimate the beam diameter at the center of
the chamber. Beam diameter is 2r where r = s

a
(a+ b)

In our case, we have a = 51.816 mm (2.04 inches), b = 90.424 mm (3.56 inches)

and s = 0.254 mm (0.01 inches). Therefore, we estimate the beam diameter to be

2r = 0.01×5.6×2
2.04

inches ≈ 1.4 mm.

Before we talk about the main support structure, we should check that a+b is indeed

between the Quitting Surface and the Mach Disk. First, our pressure levels inside the

chamber are on the order of Pb ∼ 10−5 torr and lower. With a very low assumption

of P0 = 1 bar≈ 750 torr, we have xM = 0.67 × d ×
√

75× 106 ≈ 5802 × d × 2.54 ≈

116× 2.54 = 294.6 cm (116 inches) with d = 0.5 mm (0.02 inches). Therefore, we are

definitely ionizing before the Mach Disk. As for the quitting surface, it is between

18 cm and 2 cm, but towards the 2 cm range. Therefore, most likely, the position of

ionization is after the Quitting Surface [12].
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Appendix E

Nominal and Calibrated Voltages

of our Electrodes

Push Plate Push Plate Grid Plate Grid Plate Einzel Lens Einzel Lens

Voltage (Nominal) Voltage (C) Voltage (Nominal) Voltage (C) Voltage (Nominal) Voltage (C)

1040 1025 700 673 0 2.7
1270 1271 900 881 400 410
1500 1510 1100 1098 600 619
1600 1611 1300 1304 800 821
1730 1744 1500 1510 1000 1031
1960 1979 1700 1722 1200 1241
2190 2222 1900 1926 1400 1451
2420 2458 2100 2137 1600 1659
2650 2689 2300 2335 1800 1856
2880 2916 2500 2540 2000 2065
3110 3149 2700 2743 2200 2276
3340 3383 2900 2947 2400 2484

Table E.1: Nominal and Calibrated Voltage samples of our electrodes. Nominal volt-
ages are based on the dials of our voltage source, whilst calibrated voltages are based
on our multimeter measurements. “(C)” denotes calibrated voltages. The voltages
that we did not take an exact data for are approximated with a basic proportionality
calculation with the closest available data point.
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