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Abstract

Trapped ion systems have emerged as a cornerstone of modern experimental physics,
enabling breakthroughs in fields ranging from quantum computing and atomic clocks to pre-
cision spectroscopy, metrology, and molecular reaction dynamics. Their utility stems from
the exceptional coherence, stability, and reproducibility of trapped ions, which enable non-
destructive, high-resolution interrogation of quantum systems. For these reasons, there is
a growing need for frameworks that not only simulate trapped ion behavior, but also intel-
ligently guide experimental design. In this context, machine learning offers an invaluable
tool — providing a powerful and flexible means of navigating complex parameter spaces,
modeling nonlinear behavior, and predicting high-performing experimental configurations
from data. A particularly valuable application of this platform is the study of molecular ion
dissociation — specifically, the detection of dissociation of O+

2 from a prepared rovibrational
state using Laser-Cooled Fluorescence Mass Spectrometry (LCF-MS). While LCF-MS is a
conceptually straightforward and widely used technique, the interplay between species in
three-dimensional Coulomb crystals gives rise to rich and sensitive dynamics. In practice,
these complexities make it difficult to consistently resolve dissociation events with high pre-
cision. To address this, we turn to numerical simulation and machine learning as tools to
better understand and optimize system behavior — with the ultimate goal of improving our
ability to quantify the number of O+

2 ions in the trap from fluorescence signal alone. In this
thesis, I leverage a high-fidelity simulation engine, QLICS, to generate large-scale datasets
of across varied trap configurations. First, I construct a sample composite cost function
to label outcomes and identify benchmark cases of strong number resolution. I then apply
ensemble classification machine learning methods with carefully tuned hyperparameters to
build a predictive model capable of guiding experimenters toward high-performing, robust
configurations. Simultaneously, I use Monte Carlo sampling to capture stochastic variability
and produce probabilistic estimates. I also integrate a novel interpolation technique with
K-nearest neighbor scoring to yield a stability metric that quantifies local robustness in pa-
rameter space. Together, these tools not only support a principled, data-driven optimization
framework, but also uncover a key physical insight: no single configuration performs op-
timally across all dissociation steps. This motivates a mixed strategy approach, in which
distinct configurations are used for different numbers of dissociated ions to maximize signal
resolution and experimental reliability.
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Chapter 1

Introduction

1.1 Motivation

Imagine being able to onboard a new lab partner — one who doesn’t need a full theoretical

derivation every time, never forgets a result, and can instantly flag whether a new config-

uration is likely to succeed. A partner who can comb through thousands of simulations in

seconds, spot patterns that no human ever would, and adapt its judgment with every new

datapoint — all without getting tired, biased, or overwhelmed. Not someone to replace phys-

ical intuition, but something to amplify it — a model that learns directly from the physics,

and helps guide the next move with precision and speed. This idea sits at the heart of this

thesis and captures what machine learning makes possible in a setting where intuition alone

falls short.

At its core, this project is about learning how to identify “good” experiments without

having to stumble through dozens of bad ones to get there. There’s a great deal of physics

involved — we’re trapping ions in a vacuum, driving dissociative transitions with UV lasers,

and using photon count data to infer the composition of an ion crystal — but what ties

the entire effort together is a single optimization problem: how do we efficiently explore a

massive, high-dimensional space of experimental parameters in search of configurations that
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actually work? And beyond that, how do we develop a model that can help us navigate that

space in a systematic, generalizable, and semi-automated way?

At a broader level, the scientific motivation behind this work is to test whether funda-

mental constants — in particular, the proton-to-electron mass ratio, µ — remain invariant

over time. While the Standard Model asserts that µ should be constant, several theoretical

extensions, including models derived from string theory, allow for the possibility of slow

temporal drift [1]. Observing even a small variation in µ would offer evidence for physics

beyond the Standard Model, making it a compelling target for high-precision experimental

efforts [1]. Our lab’s approach centers on molecular oxygen ions (O+
2 ), whose vibrational

transition frequencies are highly sensitive to µ [2]. By preparing O+
2 in specific quantum

states and monitoring how those states evolve and dissociate under controlled experimental

conditions, we aim to detect subtle shifts in transition energies that would indicate a change

in µ over time [1, 2].

Achieving that level of sensitivity, however, depends critically on our ability to resolve the

outcomes of those dissociation events with high precision. Specifically, we need to measure

— cleanly and reproducibly — how many O+ ions are produced when a dissociation event oc-

curs. This count is the primary signal from which we infer vibrational transition energies [3].

Since our detection scheme only directly observes fluorescence from Be+ ions, we rely on

changes in motional coupling to indirectly sense the presence of dissociation products [3, 4].

By correlating the appearance of O+ ions with shifts in the fluorescence signal, we can back

out the vibrational states responsible for the dissociation, making precise ion counting es-

sential for spectroscopy. If that number is ambiguous or buried in noise, the precision of

the transition frequency measurement degrades, and with it, our ability to place meaningful

bounds on µ variation. Thus, the focus of this thesis is to develop a robust, general-purpose

framework for identifying dissociation events and optimizing trap configurations to enhance

number resolution — that is, to distinguish between different numbers of O+ ions in the trap

with maximal clarity. By improving this resolution, we directly improve the quality of our
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measurements and increase the sensitivity of the overall system to potential variations in µ.

This work is therefore a foundational step toward enabling the broader scientific objective.

1.2 Why Use Machine Learning?

So why not simply repeat the experiment until a clear result emerges? In practice, it’s

not that straightforward. Even under ideal conditions, replicating the same experiment

isn’t trivial. Equipment drifts, crystals destabilize, detection optics shift out of alignment,

and parameters thought to be stable can unexpectedly vary. In simulations, these issues

are less severe, but the sheer size of the parameter space presents its own challenge. The

knobs we’re adjusting include laser detuning, beam geometries, trap voltages, ramp and

modulation sequences, timing parameters, and more — a blend of continuous, discrete, and

categorical variables with nonlinear and often interdependent effects. Brute-force search

becomes unmanageable almost immediately. What we need is a way to explore that space

efficiently and intelligently. This is where machine learning enters the picture.

Machine learning brings two essential capabilities to the table: it enables the system to

be trained, and it makes the results reproducible. Once we’ve run a set of simulations and

labeled the outcomes as “good” or “bad” based on consistent features in the dissociation

spectrum — like slope sharpness or signal-to-noise — we can use that data to train a model

that learns what distinguishes a successful configuration from a poor one. That model

can then make informed predictions about new, unseen configurations, and even steer future

optimization efforts. Because this process is grounded in data rather than manual heuristics,

it avoids the pitfall of overfitting1 to a specific experiment or run condition. Even if the

simulator isn’t perfectly accurate in absolute terms, the model can still learn useful patterns

as long as the internal logic of the simulation remains consistent.2

1Overfitting occurs when a model learns the training data too closely, including noise or outliers, which
reduces its ability to generalize to new, unseen data.

2If the simulator consistently applies the same rules across all inputs, the model can learn relative patterns
and trends, even if absolute outputs differ from real-world measurements.
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More importantly, this approach allows us not just to identify promising configurations,

but to understand why they perform well. Interpretability is a core requirement — the

goal is to uncover which parameters matter most, how they interact, and where the bound-

aries between successful and unsuccessful configurations lie. These insights feed directly

into experimental planning and refinement. Later chapters will explore both the theoretical

foundations and practical implementation of the machine learning models used in this frame-

work, showing how they enable a structured, data-driven approach to optimizing dissociation

experiments.

1.3 Overview of Physics Theory in the Lab

Before we can build a machine learning pipeline to classify and optimize outcomes, we need

a clear understanding of what the physical system is doing — and why the structure of

the experiment lends itself to simulation and data-driven modeling in the first place. This

section walks through the experimental sequence in physical terms: beginning with the

trap architecture and proceeding through ion loading, cooling, spectroscopy, and detection.

Each stage introduces new layers of complexity and control, but also new opportunities for

parameter tuning — which is where the optimization problem takes shape.

It is important to note that this section is intended primarily to offer a high-level overview

of the most essential theoretical concepts underlying the lab system, and to link them to-

gether in a way that frames the simulation work presented in later chapters. It does not

aim to be an exhaustive walkthrough of every physical mechanism or interaction involved.

In some cases, equations or derivations are intentionally omitted or deferred to references

in favor of a more focused conceptual summary. For readers seeking a more complete and

detailed treatment of the system’s physics and hardware implementation, we refer to Sec-

tion 1.2 of Michael Mitchell’s thesis [3] and the introductory chapters of Will Henshon’s
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thesis [5], among other works.3 We now turn to the trap itself, beginning with the principles

and structure of the linear Paul trap that forms the core of the experimental apparatus.

1.3.1 Experimental Setting: the Linear Paul Trap

The core experimental apparatus is a linear Paul trap, a well-established system for confining

ions using dynamic electric fields. It consists of four long electrodes arranged in a quadrupole

configuration to provide radial confinement, and two of the electrodes are segmented along

trap axis to create axial confinement [6]. A high-frequency radiofrequency (RF) voltage —

typically 11.04 MHz at 60 Vpp4 — is applied to the rod electrodes, generating a rapidly

oscillating quadrupolar field [3, 6].

Although this RF field is inherently time-dependent, it can be approximated as a pseu-

dopotential in the time-averaged regime [3]. This approximation holds when the RF stability

parameter q (from the Mathieu equation) is small, which is the case here [3]. The parameter

q is defined as:

q =
2e(2V0)

mr20Ω
2
, (1.1)

where e is the charge of the ion, V0 is the zero-to-peak RF voltage, m is the ion mass, r0 is

the radial distance from the trap center to the rod electrodes, and Ω is the RF drive angular

frequency [4, 6]. For 16O2
+, this produces a Mathieu parameter of approximately 0.05 under

typical operating conditions [4].

Under these conditions, ions experience a smooth, effective harmonic potential and un-

dergo secular motion — slow, large-amplitude oscillations in space [3]. The time-averaged

pseudopotential experienced by an ion in the radial direction can be written as:

3Additional technical context and historical background can be found in earlier honors theses and relevant
publications cited in the Bibliography.

4Vpp (peak-to-peak voltage) refers to the full voltage swing from the minimum to the maximum of an
AC signal. For example, 60 Vpp means the voltage oscillates between −30 V and +30 V.
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Φpseudo(r) =
e2V 2

0

mΩ2r40
r2 (1.2)

where e is the ion charge, m is the ion mass, V0 is the zero-to-peak amplitude of the applied

RF voltage, Ω is the angular RF drive frequency, r0 is the characteristic radial distance from

the trap center to the electrodes, and r is the radial displacement from the trap axis.5 This

quadratic form confirms that the ion is effectively confined in a harmonic potential well,

justifying the use of the secular approximation [3].

The corresponding radial secular frequency in the pseudopotential approximation is given

by:

ωr =
qΩ

2
√
2
, (1.3)

and characterizes the strength of radial confinement for a given set of trap parameters [4].

Superimposed on this secular motion is a higher-frequency component called micromo-

tion, which arises from the rapid oscillations of the RF trapping field [3]. Micromotion is

a driven motion at the RF drive frequency Ω, and it is intrinsic to the trap geometry —

any ion displaced from the RF null will experience it. In ideal conditions, where the trap is

well-aligned and operated at low Mathieu q parameters (typically qx,y < 0.3), micromotion

remains small compared to the secular motion and does not significantly distort ion trajec-

tories [3]. However, it is not captured in the pseudopotential approximation, which filters

out all motion at the RF frequency.6 Minimizing excess micromotion is critical to ensuring

consistent experimental behavior and maintaining a cold, well-ordered Coulomb crystal [3].

Axial confinement is provided by static DC voltages on the endcap electrodes, creating

a harmonic potential well along the trap axis [6]. The axial frequency is given by:

5See annotated configuration file (Appendix C) for specifics.
6The pseudopotential approximation assumes that micromotion is negligible and retains only the slower

secular dynamics. This assumption holds near the trap center for sufficiently small q and a parameters,
where secular motion dominates. A more thorough treatment of this approximation is provided in Chapter
2 of Michael Mitchell’s thesis [3]
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ωz =

√
2κeU

mz20
, (1.4)

where U is the applied endcap voltage, z0 is the characteristic axial length scale, and κ is a

geometric factor that depends on the trap’s design [4, 6].7 In our setup, this yields an axial

secular frequency of approximately 2π × 140 kHz for O+
2 [3, 4].

The axial confinement modifies the radial potential slightly. The corrected radial secular

frequency in the presence of a non-zero ωz is:

ωx,y =

√
ω2
r −

ω2
z

2
. (1.5)

as defined in [4]. Together, the RF and DC fields define three secular frequencies — one in

each spatial direction — which depend on the ion’s charge-to-mass ratio q/m. This species-

dependent variation in motional frequencies is critical for selective excitation, enabling the

experiment to target specific ion types through resonant modulation [3].

The overall trap geometry is compact — typically a few millimeters in each dimension —

which ensures tight spatial confinement and strong inter-ion Coulomb interactions [3, 5, 6].

These conditions are essential for efficient cooling, stable Coulomb crystal formation, and the

indirect detection techniques employed later in the experiment. With the trap architecture

in place, we now consider how the system is populated with ions and how those ions evolve

into a stable crystalline configuration suitable for spectroscopy and detection.

1.3.2 Ion Loading and Crystal Formation

Once the trap fields are established, the system is loaded with three ion species: Be+, O+
2 ,

and O+. Be+ is introduced by resistively heating a beryllium oven — a thin wire wrapped

around a tungsten core — to sublimate atomic beryllium, which is then photoionized using

a 235 nm laser beam derived from a frequency-doubled ECDL [3, 7]. Molecular oxygen (O2)

7As before, these values can be found in the Annotated Configuration file in Appendix C.
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is introduced as a neutral gas pulse, directed through a series of skimmers into the trap

region, and ionized via a 301 nm pulsed laser using a 2+1 REMPI process [2, 3, 5]. O+ ions

are not injected directly; instead, they appear as a product of O+
2 dissociation during later

experimental stages.8 The resulting multi-species Coulomb crystal is stably confined and

sympathetically cooled via Doppler laser cooling of Be+, enabling precision measurements

via fluorescence readout.

After ionization, the resulting plasma is confined by the trap and begins to evolve un-

der the influence of the pseudopotential and inter-ion Coulomb repulsion [3]. As energy is

removed (via processes discussed in the next subsection), the ions settle into an ordered,

low-temperature structure known as a Coulomb crystal [3]. This is not a crystal in the

traditional solid-state sense, but rather a spatially stable arrangement of ions in which their

mutual repulsion balances against the confining potential [3, 5]. The repulsive force between

ions is governed by the Coulomb potential:

Uij =
qiqj

4πε0|ri − rj|
, (1.6)

where qi and qj are the charges of ions i and j, and |ri−rj| is their separation. Minimizing this

interaction energy — while confined in the external trap potential — leads to the formation

of the crystal structure [3].

The crystal’s spatial structure is governed by the q/m ratio of each species. Ions with

a higher charge-to-mass ratio — such as Be+ — experience stronger confinement and settle

closer to the center of the trap [3, 4, 6].9 This radial position r is determined by a balance

between the trap pseudopotential and the Coulomb repulsion. For an ion of mass m and

charge q, the equilibrium position approximately satisfies:

8Each dissociation event converts one O+
2 ion into a single O+ product ion, making the presence and

number of O+ ions a direct readout of dissociation yield.
9This spatial ordering allows for indirect sensing: because Be+ resides at the center and fluoresces, its

motion reflects perturbations caused by outer ions like O+
2 and O+, enabling indirect detection through

Coulomb coupling.
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q2V 2
0

mΩ2r40
ri ∼

∑
j ̸=i

q2

4πε0|ri − rj|2
, (1.7)

demonstrating that lighter, more strongly confined ions remain near the center, while heavier

species like O+
2 and O+ are pushed to the edges [3]. This radial separation is critical for later

stages of the experiment, as it enables motion in one species to be indirectly sensed through

another via Coulomb coupling. To maintain this delicate spatial arrangement and ensure

long-term stability of the crystal, active cooling mechanisms must be applied to dissipate

residual thermal energy and suppress unwanted motion.

1.3.3 Laser Cooling and Doppler Dynamics

To stabilize the ion crystal and reduce its thermal energy, we apply Doppler cooling to the

Be+ ions [3, 4]. A near-resonant laser is directed at the crystal with a detuning slightly

below the Be+ resonance frequency [2, 7, 8]. Ions moving toward the laser experience a

Doppler shift that brings them closer to resonance, increasing the scattering rate [3, 7, 8].

This results in a net damping force that opposes the ions’ motion, cooling them toward the

Doppler temperature limit. The photon scattering rate is given by:

Rscat =
s0Γ/2

1 + s0 +
(
2δ
Γ

)2 , (1.8)

where s0 is the saturation parameter, Γ is the natural linewidth of the transition, and δ is

the effective detuning, including the Doppler shift due to ion velocity [9].

The laser is defined by several parameters: beam origin, direction, waist size, detuning,

and saturation intensity. These values are carefully chosen to maximize cooling efficiency

along all spatial axes, with emphasis on the axial direction where secular motion is most

strongly observed [3].

Only Be+ interacts with the laser directly. O+
2 and O+ are optically dark, meaning they

do not scatter photons and therefore cannot be cooled by the laser itself [4]. Instead, they
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undergo sympathetic cooling via Coulomb interaction with Be+ [3, 10]. As long as the crystal

is well-coupled, thermal energy is redistributed across all species, bringing the entire system

to a stable low-temperature state [10].

This cooling phase usually lasts a few milliseconds and is essential for reaching the crys-

talline regime [3]. Without it, the ions remain in a high-temperature plasma state and do

not exhibit the spatial structure or motional stability needed for precise dissociation detec-

tion.10 Once the ions are sufficiently cooled and the crystal is stabilized, the system is ready

for controlled dissociation events, which form the basis of the signal we aim to detect and

optimize.

1.3.4 Dissociation of Molecular Oxygen

In our experiment, molecular oxygen ions (O+
2 ) are dissociated using either a 266 nm or

355 nm laser after vibrational excitation [2]. Each dissociation event yields a single trapped

O+ ion. The number of O+ ions observed in the trap serves as the experimental readout for

dissociation yield. We do not simulate the dissociation dynamics directly; instead, QLICS

initializes the system with a fixed number of O+
2 and O+ ions, allowing us to focus on

optimizing downstream detection [11].11 To detect these dissociation events with high fidelity,

we rely on a modulation technique that selectively excites specific ion species and reveals

their presence through induced motion within the crystal.

1.3.5 Modulation and Fluorescence Mass Spectrometry

After the system has cooled into a stable crystal, we apply a modulation field — a time-

dependent electric field — to drive species-specific excitation. This is implemented by mod-

10Precise dissociation detection relies on observing subtle fluorescence changes; excess motion from an
uncooled or unstable crystal would mask these signatures, reducing resolution and obscuring stepwise ion
loss.

11Because the dissociation process is not the primary focus of this study, we bypass simulating the molecular
dynamics of bond breaking with QLICS. Instead, it assumes idealized dissociation outcomes to isolate and
optimize the downstream detection signal — the key experimental observable.
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ulating the trap potential at a user-defined frequency, amplitude, and spatial profile. The

field is typically represented using a second-order polynomial expansion, with coefficients

precomputed from SIMION12 electrostatic simulations [3, 12].

The key idea is to scan the modulation frequency across a range that includes the secular

frequencies of the target species. When the modulation matches the resonant frequency of a

particular ion type (e.g., O+
2 or O+), it drives coherent oscillations in that species [12]. The

applied electric field generally takes the form:

Ex(t) = (A0 + A1x+ A2x
2) cos(2πfmodt), (1.9)

where A0, A1, and A2 are field coefficients, and fmod is the modulation frequency [3]. This

form allows for controlled spatial and temporal targeting of the excitation field [3].

These motions, while not directly observable, perturb the Be+ ions via Coulomb cou-

pling. This is the essence of LCF-MS spectroscopy: by applying a weak, frequency-swept

modulation and monitoring the Be+ response, we can infer motion in another species. The

modulation must be carefully tuned — strong enough to induce motion, but not so strong

that it disrupts the crystal or causes ion loss [3]. The waveform duration, amplitude, and

shape are all tunable parameters in the experiment.

Because Be+ is the only species that interacts with the detection laser, the entire detection

mechanism relies on this indirect motional coupling [4]. The next phase reads out the

resulting motion using Be+ fluorescence.

1.3.6 Fluorescence Detection and Readout

Following modulation, a near-resonant laser is used to induce fluorescence in the Be+ ions [3,

12]. A photomultiplier tube (PMT) collects photons scattered along a defined solid angle,

and the photon counts are recorded over time [3]. This produces a PMT trace — a time-

12SIMION is a charged-particle optics simulation program used to calculate electric field distributions from
electrode geometries. In this context, it provides the spatial field coefficients used to construct the modulation
waveform applied in the experiment.
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series dataset representing the instantaneous scattering rate of Be+ ions during the detection

window [3].

The detection mechanism exploits Doppler dynamics: motion of the Be+ ions shifts their

absorption profile relative to the cooling laser, suppressing photon scattering. When O+
2

ions are resonantly excited, their motion perturbs the Be+ ions, increasing their velocity and

reducing fluorescence. This results in a dip in the photon count rate — a signature that

resonant motion has occurred in the target species [3, 4, 12].

A high-quality dissociation signal is characterized by a sharp, monotonic drop in fluores-

cence at a specific modulation frequency, often accompanied by a clear slope in a frequency

sweep. In contrast, poor signals appear flat or noisy, indicating weak coupling or off-resonant

excitation. The steepness and clarity of the fluorescence trace define our experimental figure

of merit, and form the basis for the cost functions and classifiers developed later in this

thesis.

Critically, this detection method is fully indirect. We never observe O+
2 or O+ ions directly

— all measurements are inferred from their dynamical effects on Be+ [3]. This makes the

system highly sensitive to experimental parameters like alignment, cooling quality, and trap

stability. Even small deviations in modulation amplitude or endcap voltage can significantly

degrade signal quality.

1.3.7 Theory Summary

To summarize, the experimental platform centers around a linear Paul trap, where radial

confinement is provided by oscillating RF voltages and axial confinement by static DC volt-

ages. These fields collectively create a pseudopotential that confines ions according to their

charge-to-mass ratio, producing species-specific motional frequencies. Once loaded, ions set-

tle into a Coulomb crystal structure determined by both the trap geometry and inter-ion

repulsion, with lighter species occupying the center and heavier ions pushed outward. Laser

cooling is applied to Be+ ions to reduce thermal motion, enabling stable crystal formation.
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Other species, including O+
2 and its dissociation product O+, are cooled sympathetically

through Coulomb interactions.

Dissociation is triggered optically and results in additional O+ ions, which alter the

crystal’s motional dynamics. These changes are indirectly detected by applying a species-

targeted modulation field and observing the fluorescence response of the Be+ ions. A decrease

in fluorescence indicates resonant excitation, and the slope of the resulting photon count trace

serves as a proxy for dissociation resolution. Because the system’s readout is indirect and

depends on careful alignment and parameter tuning, it is highly sensitive to fluctuations. It

is precisely this sensitivity that motivates the need for simulation.

1.4 Why Simulation?

This is where simulation becomes indispensable. In principle, one could collect all necessary

data from physical experiments, manually adjusting parameters and recording outcomes.

In practice, however, lab experiments are time-consuming, resource-intensive, and prone to

disruption. Small misalignments, ambient temperature fluctuations, or beam instabilities

can compromise repeatability and introduce noise [3].13

To circumvent these limitations, we turn to QLICS14 — the Quantum Logic Ion Control

Simulator — a custom wrapper around LAMMPS that produces high-fidelity simulations

of the experimental sequence. Given an .ini configuration file specifying the ions, trap

geometry, laser properties, detection setup, and modulation phases, QLICS simulates time

evolution and returns photon count traces that closely resemble those generated by the

photomultiplier tube (PMT) in the actual experiment [3, 11]. These synthetic traces form

the dataset used to train and evaluate all subsequent models.

Importantly, the goal is not to make QLICS a flawless replica of the real system. Rather,

13Experimental signals can be disrupted by small fluctuations in alignment, ambient conditions, or beam
path integrity. As noted in Michael Mitchell’s thesis, issues such as missing resonances, unstable peaks,
and unexplained signal behavior motivated the development of QLICS to provide controlled, repeatable
simulations that bypass these sources of experimental instability [3].

14Thank you to Michael Mitchell for development and testing of QLICS.
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we require that it be internally consistent — meaning that for any given set of input pa-

rameters, it produces output signals that are structured, repeatable, and physically sensible.

Perfect fidelity to the real experiment is neither expected nor necessary; what matters is that

the simulator reliably captures the dominant dynamics and trends relevant to experimental

outcomes.15 The machine learning model is not tasked with uncovering the fundamental

physics from first principles;16 it only needs to learn the behavioral structure encoded by

QLICS. In this sense, QLICS functions as a fast, controllable sandbox for exploring pa-

rameter space and prototyping optimization strategies before committing to time-intensive

experimental runs.

This framework sets the stage for a broader motivation. While QLICS provides a sim-

ulated environment for optimization, the relevance of this effort hinges on the foundational

role that ion traps play in modern experimental physics. Understanding the general impor-

tance of trapped ion systems helps contextualize why efficient control and optimization of

these platforms matters at all — and why simulation-based tools like QLICS are increasingly

indispensable.

1.5 General Importance of Ion Trapping

Trapped ion systems have emerged as one of the most powerful and tunable platforms in mod-

ern experimental physics [10, 13]. They serve critical roles in the field of quantum informa-

tion, ultrahigh-resolution spectroscopy, and precision tests of fundamental constants [12, 14].

Their appeal lies in the fine-grained control they afford: over individual particles, over the

geometry and strength of electromagnetic fields, and over dynamical processes across multi-

ple time and energy scales [10, 14]. That same tunability, however, introduces a significant

degree of complexity. As the number of adjustable parameters grows, so does the difficulty

15In this setting, internal consistency ensures that trends learned by the model reflect true parameter
dependencies rather than stochastic noise, making the simulator a dependable training environment.

16In other words, the model learns the simulator’s input-output mapping, not the complete mechanistic
details of ion motion or quantum state transitions.
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of identifying configurations that yield high-quality experimental outcomes [3]. This thesis

addresses that challenge directly — not simply as a machine learning study or a simula-

tion exercise, but as a blueprint for turning complex experimental design into a well-posed,

algorithmically tractable optimization problem.

Beyond its methodological contributions, this work supports a broader scientific goal:

testing the long-term constancy of the proton-to-electron mass ratio, µ, via high-resolution

spectroscopy of vibrational transitions in O+
2 ions. While the Standard Model predicts µ to

be invariant, certain extensions — including string-theoretic and scalar-field models — allow

for slow cosmological drift [1]. Observing even a minute deviation would constitute direct

evidence of new physics.

To enable such tests, the experiment must detect dissociation events with exceptional

precision. That means resolving the number of O+ ions produced in each trial cleanly

and reproducibly — a task that hinges on careful control of trap parameters, modulation

conditions, and fluorescence readout. Optimizing these elements systematically is what

transforms the platform from a basic spectroscopy setup into a viable probe of fundamental

constants.

Subsequent chapters will examine how classification models are trained, how performance

is validated, and how those models integrate with an optimization pipeline that actively pro-

poses new configurations. But the underlying motivation remains consistent throughout:

to increase resolution in molecular dissociation measurements, to reduce experimental trial-

and-error, and to build a self-correcting system that improves over time. Achieving those

goals is not merely a technical contribution — it supports the broader objective of testing

fundamental symmetries and potentially uncovering time variation in µ, which would mark

a profound departure from currently accepted physical law. To reach that level of experi-

mental precision, however, we must first understand the simulation framework that underlies

prediction and classification in this thesis.

15



Chapter 2

Simulation Architecture

Before diving into machine learning optimization, it’s necessary to unpack the mechanics of

the simulation itself — what’s actually being simulated, how it’s structured, and what the

simulation environment does when we say “run an experiment.” Simulation is the backbone

of this project. Without a clear picture of how our simulations work under the hood, the

later machine learning pipeline would just feel like tuning knobs on a black box. The goal

here is to make that box transparent. To that end, the next section introduces QLICS —

the software framework that underpins all simulations in this study. By walking through

its structure and execution flow, we establish the foundation needed to understand how

experimental behavior is modeled, analyzed, and ultimately used for training downstream

machine learning algorithms.

2.1 QLICS Overview

QLICS is a standalone Python application designed to simulate a trapped ion experiment

based on a user-specified configuration [3]. Each simulation begins with a human-readable

.ini file that defines experimental parameters, such as trap voltages, ion species, modulation

waveforms, laser geometries, and detection settings. The file structure is parsed into Python

dictionaries and interpreted by QLICS into a sequence of commands that prepare, run, and
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analyze a virtual experimental trial [3, 15].

QLICS serves as an orchestration layer. It handles file parsing, phase scheduling, ob-

ject initialization, parameter iteration, and output formatting [15]. Crucially, it also wraps

around the LAMMPS engine, injecting domain-specific physics (e.g., laser cooling, pseu-

dopotential approximations) and coordinating LAMMPS’s time evolution with experimental

phases [3, 11]. The architecture is modular.1 Each .ini file defines:

→ Ion clouds with species, counts, and initial radii.

→ Trap configurations using geometric and RF parameters.

→ Cooling and detection lasers with full optical profiles.

→ Modulation fields expressed as low-order electric field expansions.

→ Timing sequences specifying when each force or signal is active.

Together, these allow the simulation of experiments with time-resolved control over the

physics applied to the system. To implement the core physical dynamics of ion motion

and interaction, QLICS relies on an external simulation engine capable of high-precision

numerical integration.

2.2 LAMMPS Integration

QLICS utilizes LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator)2 as

the physics engine responsible for computing inter-ion forces and integrating the classical

equations of motion [11]. Originally developed for simulating atomic and molecular systems,

LAMMPS is both efficient and extensible, making it a suitable backend for trapped-ion

simulations — provided we supply the correct physical approximations [11].

1Modular here means that each component of QLICS — including ion initialization, cooling routines,
modulation application, and readout — is implemented as a discrete, interchangeable module. This allows
users to modify, extend, or replace individual parts of the simulation pipeline without changing the entire
framework.

2For specific documentation, see [11]
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LAMMPS is used for: (i) Calculating inter-ion Coulomb forces, (ii) evolving the system

via the velocity-Verlet integrator [3, 16],3 and (iii) applying externally defined forces such as

cooling, modulation, and trap confinement. However, LAMMPS has no native understanding

of trapped-ion physics. To adapt it, QLICS injects several layers of abstraction [3]:

→ Trap forces are implemented using an effective harmonic potential (i.e., the pseudopo-

tential approximation).

→ Laser cooling forces are applied via custom fix objects that calculate Doppler shifts

and velocity-dependent damping.

→ Electric field modulations are computed analytically from polynomial field expansions

and applied as time-dependent external forces.

LAMMPS remains unaware of the experimental semantics (e.g., modulation phase or detec-

tion time).4 QLICS controls which forces are active at each phase and passes updates to

LAMMPS accordingly. This makes LAMMPS an efficient but agnostic worker engine — all

context resides in QLICS.

2.3 Simulation Workflow

Each simulation consists of a defined sequence of time phases, each with its own timestep,

duration, and active physical processes. These are listed in the [timesequence] block of the

.ini file and executed in order [3]. The typical life cycle involves:

1. Initialization

Ion positions are sampled randomly within user-defined cloud radii. These form the

starting conditions of the simulation. Velocities are initially set to zero [3].

3Formulation is noted in detail in the appendix of Michael Mitchell’s thesis [3].
4LAMMPS acts like the engine of a car: it executes the physics computations efficiently, but it doesn’t

know where it’s going or why. QLICS is the driver — responsible for steering, scheduling, and interpreting
the experimental context.
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2. Trap Thermalization Phase

Cooling lasers are applied to thermalize the ion crystal. LAMMPS evolves the system

under trap and laser forces. This phase ensures ions settle into a realistic configuration

before modulation or detection.

3. Modulation Phase

Time-varying electric fields defined in [modulation *] blocks are applied. These

fields are calculated from polynomial expansions (e.g., ex0, exx1, exx2) derived from

SIMION field maps [17]. The fields oscillate at a user-defined frequency, designed to

resonantly excite motion in target species.

4. Detection Phase

A near-resonant scattering laser is applied to Be+ ions. The Doppler-shifted scattering

rate is calculated for each ion, timestep-by-timestep. Photons emitted along a specified

direction are collected into a synthetic PMT signal — a time-series CSV output [3].

5. Post-Processing

After each run, QLICS analyzes the resulting trace. If an [iter] block is defined

(e.g., for frequency sweeps), QLICS loops over parameter combinations, modifies the

.ini inputs accordingly, and generates a batch of simulations [3, 15].

2.4 Stochasticity

While QLICS is designed to be deterministic in its force modeling and numerical integration,

several key aspects of each simulation are intentionally stochastic, in order to better reflect

the probabilistic nature of real experimental systems.

First, ion initialization introduces randomness at the very start of each simulation. When

an ion cloud is defined in the .ini file, its constituent ions are randomly positioned within

a specified spherical radius around the trap center [3, 15]. Though the number of ions

and initial cloud size are fixed, the exact spatial distribution of ions varies between runs,
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producing slightly different initial Coulomb interactions and thermalization paths. This

affects not only crystal structure but also energy distribution5 at the end of the cooling

phase [11].

Second, the direction of each emitted photon is also randomized using isotropic angular

sampling (or with a detector-specific angular cutoff if defined), and only photons within the

collection solid angle are recorded [3]. These stochastic draws introduce run-to-run variability

in the final PMT trace — even when the same .ini file is used.6

Third, thermalization dynamics are indirectly stochastic due to their dependence on ini-

tial conditions [11]. Although laser cooling is modeled deterministically via Doppler damp-

ing, the random ion positions and subsequent Coulomb collisions during early time evolution

cause variability in how quickly and cleanly the crystal forms, especially in configurations

close to melting thresholds [11, 15]. This impacts the effective temperature and spatial

coherence of the crystal when modulation begins.

Finally, modulation responses can be sensitive to these stochastic elements [3, 4, 12].

Because the system is driven near resonances, slight differences in initial crystal alignment

or thermal state can amplify into larger differences in ion trajectories during the modulation

phase. This is especially true when a secular frequency is only marginally matched, or when

motional coupling between species is highly state-dependent [3].

Together, these stochastic components create a simulation environment that is not en-

tirely deterministic — and intentionally so. Rather than producing identical outputs for

fixed inputs, QLICS is designed to simulate the statistical distribution of possible outcomes

that one might observe in a real experimental run. This variability is not a source of error

but a feature, and it informs how downstream machine learning models must be trained:

not just to predict point outcomes, but to be robust to uncertainty, noise, and run-to-run

variation. Later chapters will leverage Monte Carlo sampling to quantify this variability and

5Small differences in initial ion spacing lead to variation in how energy is redistributed during Doppler
cooling. This affects final ion velocities, local heating, and the overall symmetry of the resulting crystal
structure — all of which can subtly alter modulation response and fluorescence output.

6This is why simulated photon counts are often non-integer values [3].
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to build models that account for it explicitly.

2.5 File Format and Parameter Definitions

All simulation inputs are defined in a single .ini file, structured by sections [15]:

→ [ions] – Defines species, charges, masses, and cooling behavior.

→ [ion cloud *] – Specifies ion counts and initial conditions.

→ [trap *] – Sets trap geometry, RF frequency, and voltages.

→ [cooling laser *] – Defines laser position, beam waist, detuning, and k-vector.

→ [modulation *] – Configures modulation fields and their time dependence.

→ [detection] – Specifies photon collection angles and efficiencies.

→ [timesequence] – Declares time phases, steps, and active processes.

→ [iter] – Encodes sweeps over experimental parameters (e.g., tickle frequency).

These sections are parsed by QLICS into Python dictionaries, validated, and used to build

the LAMMPS input objects [11].

2.6 Use of Pseudopotential Approximation

One key simplification is that QLICS uses the pseudopotential approximation to represent

the time-averaged effect of the RF trap [3]. Rather than simulating RF micromotion directly

(which would require 10–100x smaller timesteps),7 we treat the trap potential as a static

harmonic well defined by:

Φ(x, y, z) =
1

2
m
(
ω2
x,y(x

2 + y2) + ω2
zz

2
)

(2.1)

where ωr and ωz are computed from the user-defined RF and DC voltages, as well as the

ion’s charge-to-mass ratio [3].

7As described in [3].
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This allows QLICS to evolve systems on the scale of nanoseconds to milliseconds with

manageable computational cost, while preserving the essential physics that determines sec-

ular frequencies and species separation [3]. With time evolution handled by LAMMPS and

parameter logic managed by QLICS, the final step is to extract observable signals that mirror

what an experimenter would detect in the lab.

2.7 Output Format and Trace Generation

The final output of each simulation is a CSV file mimicking the signal from a PMT detector.

The data include: (i) timestamps (in seconds), (ii) photon counts per timestep, and (iii)

metadata (e.g., iteration index, frequency, ion configuration) [15].

As a reminder from the introductory chapter, photon counts are calculated based on each

Be+ ion’s velocity and laser alignment, using:

Rscat =
s0Γ

2
(
1 + s0 +

(
2δ
Γ

)2) (2.2)

with relativistic Doppler shifts applied to get δ(v) for each ion [9].

For iterated simulations (e.g., frequency sweeps), QLICS enables us to assemble a direc-

tory of CSVs,8 one per run, which are later aggregated for analysis and ML model training.

Once simulations are run and outputs are collected, the next challenge lies in scaling this

process to explore large parameter spaces efficiently.

8In addition to the primary ph scattering.csv file, QLICS outputs include a positions.txt file (logging
ion positions and velocities at each timestep), LAMMPS logs (for debugging and performance tracking), and
an optional state history.pkl file storing simulation metadata and intermediate states. These outputs
collectively enable post-simulation diagnostics, trajectory analysis, and full trace reconstruction [15].
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2.8 HPC and Parallelization

2.8.1 Design Philosophy

The architecture of QLICS is intentionally designed to support this kind of parallelism.

Each simulation: (i) reads only from its own .ini file, (ii) writes to its own output path, (iii)

and carries no memory of global state or other runs. This statelessness makes it trivial to

scale without inter-process communication, and enables reliable parallel execution, whether

in a batch job or across a local thread pool. The entire simulation pipeline is effectively

embarrassingly parallel — a term used in high-performance computing to describe problems

that are easily distributed without complex interdependencies.9

2.8.2 Execution Strategy and Modifications

To take advantage of QLICS’s parallel-friendly design, two modes of execution are used

throughout this thesis: local multiprocessing and HPC-based job arrays, where HPC

denotes High-Performance Computing.10

For batch processing in particular, a modified version of QLICS — called qlics batch —

was developed in place of the standard interactive version. Unlike the main QLICS program,

which presents the user with a menu for selecting single-run configurations, qlics batch is

hardcoded to execute batch runs. It bypasses all interactive input and includes additional in-

frastructure to optimize the running of many .ini files concurrently. This makes it especially

well-suited for high-throughput operation on HPC systems using Slurm.11

Instead of relying on typical batch runs in QLICS which sequentially run files one after

9Because each QLICS run is fully independent — with no shared memory, synchronization, or cross-
process data exchange — there are no complex interdependencies between simulations. This allows them to
be executed concurrently on separate threads or nodes without coordination overhead, fulfilling the definition
of an embarrassingly parallel task [15].

10Parallelization refers to the execution of many simulations at once, either across CPU cores on a single
machine (via multiprocessing) or across compute nodes in a cluster (via HPC job arrays) [18].

11Slurm (Simple Linux Utility for Resource Management) is a workload manager used to schedule and
distribute jobs across HPC compute nodes [18].
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another, we utilize Python’s built-in multiprocessingmodule, which governs parallelization

across CPU cores irrespective of HPC use.12 This approach works well for small sweeps or

local development, given that typical laptops provide enough compute power to parallelize

16 or so simulations at once.

For large-scale sweeps or Monte Carlo trials, simulations are executed on Amherst’s

HPC cluster using qlics batch and launched as Slurm job arrays [18]. Each array index

corresponds to a distinct simulation defined by a separate configuration file, and outputs

are directed to a scratch directory for efficient I/O.13 This setup supports thousands of

simulations running in parallel and enables rapid14 dataset generation [18].

Both approaches share the same backend logic in QLICS, and switching between them

is seamless. The key requirement is that each simulation run be stateless and independent

— a condition QLICS enforces by design. With both local and high-performance computing

strategies in place, we are able to generate large, structured datasets of dissociation outcomes

under a wide range of parameter configurations. These datasets form the backbone of our

learning framework — providing the input-output pairs required to train models that can

generalize experimental behavior and guide future optimization. Equipped with this foun-

dation, we now shift to the theoretical underpinnings of machine learning and the rationale

behind its application to this system.

12Output paths are assigned dynamically to prevent file collisions.
13I/O stands for input/output — the process by which data is read from or written to files, memory, or

storage devices. Efficient I/O management is crucial in high-performance computing to minimize bottlenecks
during large-scale simulations.

14By rapid, we mean that without high-throughput parallelization on HPC resources, generating this
volume of data would take several years on a standard single-core machine.
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Chapter 3

Machine Learning Background and

Theory

Machine learning, broadly speaking, is a method of using past data to make future predic-

tions. It’s an umbrella term that encompasses a wide variety of algorithmic approaches, but

at its core, the field focuses on one fundamental idea: how can we use previously observed

input-output pairs to learn an underlying pattern or function, and then use that learned

function to predict or classify new data we haven’t seen before? (In this context, a “model”

refers to a mathematical or computational structure — often a set of equations, trees, or

functions — that attempts to approximate the relationship between inputs and outputs [19].

“Training” a model simply means adjusting its internal structure using a dataset, so that it

performs well at capturing those relationships [19]. Once trained, the model can generalize

its learned behavior to new inputs it hasn’t seen before.) The value in this approach is espe-

cially evident in complex, high-dimensional systems, where traditional analytical modeling

might fail due to noise, incomplete information, or sheer parameter space overload [19, 20].

You may be wondering why we might choose to use machine learning in the context of this

study to begin with. There are a multitude of reasons: First, the characteristics of complex

systems are precisely the conditions that arise in trapped ion simulations — where dozens

25



of control parameters (cooling times, laser amplitudes, trap voltages, tickle timing, ramp

sequences, and so on) interact in non-trivial ways, producing outputs that are difficult to

predict or optimize through direct intuition alone. In addition, the simulation output itself

is often noisy or nonlinear, making traditional gradient-based methods either unreliable or

entirely inapplicable. Machine learning models, especially those tailored for classification,

can operate effectively even when the cost landscape is jagged, discontinuous, or sparsely

sampled — which is exactly the regime we’re working in. On top of that, once trained, a ma-

chine learning model can generate near-instant predictions for new configurations, allowing

for rapid, iterative exploration of the parameter space without having to rerun full simula-

tions each time. This kind of real-time feedback is essential when dealing with optimization

problems where simulation runtime is non-negligible and experimental repeatability is far

from guaranteed.

The power of machine learning lies in its ability to act as a dynamic learner — not just

a calculator, but a system that can pick up patterns, generalize from examples, and improve

its predictions as more data becomes available [20, 21]. In a way, it’s exactly like onboarding

a new lab partner who doesn’t need a full theoretical derivation every time — just enough

labeled examples to figure out what “good” looks like. But unlike a human, this partner can

sift through thousands of simulations, recognize subtle correlations across high-dimensional

parameter sets, and respond instantly when asked whether a new configuration is likely

to work [19, 21]. This makes machine learning especially valuable in our context, where

outcomes depend on complex parameter interactions and full simulations are expensive1

to compute. Rather than treating each run in isolation, the model builds a memory — a

structured internal map of what works and what doesn’t — and uses that to guide further

exploration [19].

In our specific context, machine learning provides a data-driven way to automate and

guide the search for optimal configurations. Rather than performing manual tuning of input

1In this context, ”expensive” refers to the computational cost of running full QLICS simulations — each
one taking several minutes at minimum — which becomes prohibitive when exploring large parameter spaces.
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parameters based on trial and error, we can systematically collect simulation data (i.e.,

outcomes for different parameter configurations), then use that data to train a model that

“learns” what makes an experiment good or bad. Of course, “good” is not some abstract

or aesthetic label — we define it rigorously in a future chapter based on a cost function

that reflects the quality of number resolution, particularly slope steepness and consistency

in dissociation graphs. So at a high level, the machine learning system we’re constructing

is designed to take in a new set of parameter values and output a classification: is this a

“good” experiment, or not?

Before jumping into the details of the algorithms we’ll use, it’s important to distinguish

between the broad types of machine learning. While there are many taxonomies, the two

most relevant to our case are supervised learning and unsupervised learning. Supervised

learning involves labeled data — in our case, each set of parameters results in a series of

outcome values which are used to calculate whether that simulation is good or not [19].

We use this labeled dataset to train a model to make similar predictions for new parameter

combinations [21]. Within supervised learning, we’re particularly interested in classification

tasks. This means the model isn’t predicting a continuous number (like a temperature or

time), but instead assigning one of a finite number of categories — “good” or “bad” in

our binary classification framework [20]. This is distinct from regression, which deals with

continuous outputs [20]. On the other hand, unsupervised learning, like clustering, finds

patterns in data without any labels — which may become relevant in future analysis, but is

not the focus here [20].

Since this thesis is mainly focused on classification tasks, it is important to discuss the

theory behind the forms of supervised learning utilized in the study. Let’s now walk through

the specific algorithms that we’ll be using in the rest of this thesis, beginning with the

fundamental building block of the random forest model.
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3.1 Decision Trees

To truly understand random forests, it helps to start with the foundation: the decision

tree. A decision tree is one of the most intuitive, interpretable, and surprisingly powerful

models in the machine learning toolbox [19]. At a high level, a decision tree is exactly what it

sounds like — a tree-like structure that recursively splits the dataset into smaller and smaller

chunks, based on rules that aim to simplify the classification task [19]. Each node in the

tree represents a decision based on a particular feature (i.e., a parameter in the simulation),

and each “leaf” at the bottom of the tree assigns a final label or outcome — in this case,

something like “good” or “bad” experiment [19]. The following outlines how such a tree is

actually built.

Suppose the dataset consists of a multitude of simulated experiments. Each data point

corresponds to a full simulation run: a specific configuration of input parameters — such as

tickle frequency, endcap voltage, cooling ramp length, etc. — along with an output label

indicating whether the simulation produced a useful result or not. The goal of a decision tree

is to classify a new, unseen configuration as “good” or “bad,” based on what it has learned

from past data.2

The process begins at the root node — ironically, the top of the tree in these models as

shown in Figure 3.1. At this point, the model has access to the entire dataset and must decide

how to split it in a way that moves closer to making a correct classification [19]. It does this

by evaluating all possible features (i.e., simulation parameters) and all possible values they

could be split on, selecting the one that yields the highest “information gain [19, 20].” This

is a quantitative measure of how much a split reduces the uncertainty or “messiness” of the

data [19].

Formally, information gain is computed as:

2We will henceforth use ”learn” to refer to the process of identifying patterns in the training data [19].
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Figure 3.1: Root node of a decision tree trained on simulated experimental data. The split
condition (mod amp ≤ 0.48) indicates the threshold used to divide the dataset. “Gini”
quantifies class impurity in the node: 0 means perfectly pure, and 0.5 indicates maximum
uncertainty between two classes. “Samples” refers to the number of data points reaching the
node. “Value” shows the class counts (bad vs. good), and “Class” indicates the majority
class assigned for prediction.

IG = H(S)−
n∑

i=1

|Si|
|S|

H(Si) (3.1)

where H(S) is the entropy of the parent set, and each Si is a subset resulting from the

split [19]. The weighted average of the child entropies is subtracted from the parent entropy

to determine how much uncertainty was reduced [19].

To measure this messiness, metrics such as Gini impurity or entropy3 are commonly

used [19, 20]. Both are functions that increase as the classes become more mixed (e.g., 50%

good, 50% bad) and decrease as the data becomes more homogeneous (e.g., 95% good, 5%

bad). Gini impurity, for instance, is defined as:

G = 1−
C∑
i=1

p2i (3.2)

3Entropy weights rare class probabilities more heavily than Gini, which approximates class mixing with
a simpler quadratic form [19].
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where pi is the proportion of class i in the node, and C is the total number of classes (just

two in this case) [19]. A node with only one class has G = 0, indicating perfect purity [19].

Consider a split at a tickle frequency of 420 kHz. The dataset is divided into two groups:

all simulations with tickle frequency < 420 kHz, and those ≥ 420 kHz. The model examines

the composition of “good” vs. “bad” experiments in each group, computes the impurity in

each, and averages them (weighted by how many points are in each group). This yields the

impurity after the split. The tree compares this to the impurity before the split and selects

the option with the greatest reduction — the most information gained [19, 22].

Once the best feature and split point are selected, the tree creates two new child nodes —

one for each subset of the data — and recursively4 repeats the process in each one [22, 23].

Each node now operates on a smaller, more homogeneous portion of the data. This recursive

partitioning continues until a stopping condition is met. Common stopping criteria include:

→ All the examples in the node are from the same class (perfect purity).

→ The number of examples in the node falls below a minimum threshold [19, 23].

→ The maximum allowed depth of the tree is reached.

→ The gain from further splitting becomes negligible.

When a node stops splitting, it becomes a leaf, and the tree assigns it a final prediction —

usually the majority class of the data points in that leaf [22]. For example, if a leaf contains

90% “good” examples and 10% “bad,” it is classified as “good.” The prediction can also

return probabilities — in this case, a 90% confidence in a good outcome [23].

Fundamentally, the decision tree is slicing up the parameter space — the multidimensional

space defined by all simulation inputs — into rectangular regions, each corresponding to a

different sequence of decisions [19]. For example, one region might correspond to: tickle

frequency ≥ 420 kHz, endcap voltage < 4.2V, cooling ramp time ≥ 0.5ms, and so on. Any

new simulation with inputs falling into that region receives the same classification. These

4Recursively here means the tree-building process is applied repeatedly to each new subset, with the same
logic used at every level of the tree structure.
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Figure 3.2: Decision tree of depth 5 trained on simulated dummy variable data. Each internal
node represents a decision rule based on one of three features: A, B, and C. The tree splits
the dataset recursively based on these rules to separate “good” from “bad” outcomes. Each
box contains the total samples contained at that node, the split of “good” vs “bad” as
[Good, Bad], and the majority vote classification of each node. Gini coefficients are omitted
for simpler visualization. Leaf nodes are the terminal points of the tree.

rules are encoded directly in the structure of the tree [23].

This structure is what makes decision trees so interpretable, as demonstrated in Fig-

ure 3.2. The decision path can be traced through the tree, showing exactly which decisions

were made and in what order. If a prediction comes out as “bad,” it is possible to trace back

and conclude, for example, that the tickle delay was too short and the laser detuning was

outside the optimal range. This level of interpretability is particularly valuable in experi-

mental contexts, providing a concrete, rule-based explanation for why a configuration may

be failing.

That said, decision trees also have drawbacks. One major issue is overfitting [24]. Since

trees can keep splitting until every leaf is pure, they tend to memorize the training data —
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capturing noise, outliers, or simulation artifacts that may not generalize [24]. A tree that

grows too deep may detect spurious correlations that do not reflect true causal relationships,

resulting in poor performance on unseen data [19].

Another challenge is instability [19]. Small changes in the training data — even the

addition or removal of a single data point — can significantly alter the structure of the tree.

This is due to the greedy, hierarchical nature of the splitting process [19, 20]. Consequently,

decision trees can be sensitive and inconsistent, particularly when used in isolation. This

instability is a key motivation for ensemble methods such as random forests, which average

predictions across many trees to smooth out individual quirks [20].

There are also edge cases to handle — such as when a new data point falls in a region

of the parameter space not previously encountered. Depending on the implementation, the

tree may fall back to the nearest known leaf, interpolate among neighbors, or return a

default prediction [17]. These edge-case behaviors become especially important in sparse or

nonuniform datasets, as often encountered in simulation-driven work.

In practice, building a decision tree requires careful hyperparameter tuning — such as

max depth, min samples split, and min samples leaf — to balance model complexity

and generalization [19, 22]. Even in its simplest form, however, a decision tree provides a

remarkably transparent, rule-based model of the data [19]. It makes no assumptions about

linearity, does not require feature scaling, and naturally accounts for parameter interactions

— for example, if the effect of tickle frequency depends on trap voltage, the tree can capture

that relationship by splitting accordingly.

3.1.1 Random Forests

While decision trees are intuitive and powerful, their very flexibility is also what makes

them fragile. Even small changes to the training set can result in a radically different tree

structure, due to the greedy, hierarchical nature of the splitting process. This instability

and sensitivity pose challenges for generalization and model consistency. Random forests
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are designed to address these issues directly [20, 22].

Rather than relying on a single decision tree, random forests build an ensemble — a

collection of many decision trees, each trained slightly differently — and aggregate their

predictions [22]. The general strategy is called bagging, short for bootstrap aggregation [22].

For each tree in the forest, a random sample of the training data is drawn with replacement

(i.e., a bootstrap sample), a decision tree is trained on that sample, and the process is

repeated multiple times [22]. Each tree thus encounters a slightly different version of the

dataset — some points may appear multiple times, others not at all — which introduces

beneficial diversity into the forest [22, 23].

This alone reduces variance [19].5 Individual trees might make widely different predictions

on a given input, but when their outputs are aggregated — typically by majority vote6 in

classification tasks — those outlier predictions are smoothed out [22]. Although any single

tree may be inaccurate, the ensemble as a whole tends to be significantly more robust and

accurate [22]. This effect is captured quantitatively by the variance of a random forest model:

Var(f̂RF) =
ρσ2

T
+ (1− ρ)σ2 (3.3)

where σ2 is the variance of an individual tree, ρ is the average correlation between trees,

and T is the number of trees in the forest [22]. As T increases, the first term diminishes,

reducing the overall variance.

Beyond this, random forests introduce randomness at the feature level [22, 23]. When

each node considers a split, it does not examine all features in the dataset [23]. Instead,

it selects a random subset — often
√
d, where d is the number of input variables — and

identifies the best split among those [23].

This additional randomness prevents the trees from becoming too similar, particularly

5Bias refers to error from overly simplistic assumptions in the model (i.e., it underfits the data), while vari-
ance refers to error from sensitivity to small fluctuations in the training set (i.e., it overfits); the bias–variance
tradeoff captures the balance between underfitting and overfitting that all models must strike [19].

6Majority vote means the most common class prediction among all trees is selected as the final output [19].
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when a few dominant features might otherwise appear at the top of every tree. By encour-

aging the ensemble to explore less obvious partitions, the model becomes more effective at

capturing nuanced patterns and generalizes better to unseen data [19, 23].

The end result is a model that is more stable, more accurate, and more resistant to

overfitting than a single decision tree [20]. While some of the simplicity of a standalone tree

is lost (it is no longer possible to walk through a single structure to extract a clear decision

rule), random forests still provide substantial interpretability [20]. Feature importances —

metrics that indicate how often and how effectively each parameter is used across all trees

— are particularly informative. In the context of this thesis, such metrics offer insight into

which simulation parameters most influence the classification task [19].

These rankings can be used not only for interpretation but also to guide future ex-

periments. For example, if the forest consistently identifies cooling ramp time and tickle

frequency as informative features, but finds beam alignment largely irrelevant, that provides

a clear direction for optimization. Because the forest performs well even with relatively few

training points — assuming the signal is sufficiently strong — it is particularly well-suited

to scenarios where each simulation is costly and high information gain is essential.

Another valuable feature of random forests is out-of-bag (OOB) error estimation [19, 22].

Since each tree is trained on a different bootstrap sample, roughly one-third of the data is

excluded from any individual tree’s training. These unused data points serve as a built-in

test set: for each one, predictions are averaged over only the trees that did not see it during

training. This yields a reliable estimate of model accuracy without needing a separate

validation set, which is especially convenient when simulation data is limited.

Some hyperparameters7 still require tuning. The number of trees (n estimators) affects

both accuracy and computational cost — more trees generally improve performance but with

diminishing returns. The parameters max depth, min samples split, and min samples leaf

7Hyperparameters are user-specified settings that control the learning process, such as tree depth, number
of estimators, or learning rate. Unlike model parameters, they are not learned from the data and must be
set before training [19].
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govern the complexity of individual trees [17]. Deeper trees can represent more complex in-

teractions, but at increased risk of overfitting. Fortunately, random forests are more robust to

such tuning compared to many other models, making them an appealing default in complex

settings like this one [19, 20].

In summary, random forests provide a mechanism to retain the structural strengths

of decision trees while overcoming their primary limitations — namely, high variance and

sensitivity to noise. The result is a model that is robust, scalable, and informative [23].

In the context of high-dimensional, semi-noisy simulation output, random forests offer a

compelling balance between predictive power and interpretability [23]. For this reason, they

serve as a foundational component of the classification and analysis pipeline presented in

this thesis.

3.1.2 Boosting

Boosting is a closely related technique, but with a key difference: rather than training trees

independently, boosting trains them sequentially [24]. That is, instead of building a forest

of trees in parallel and averaging their outputs as in bagging, boosting constructs a series of

trees where each one is trained to correct the errors of the one before it [19, 24]. This makes

boosting an inherently iterative method, where the model is refined step-by-step, homing in

on the hardest-to-classify data points [24].

The process typically begins with a weak learner — usually a shallow decision tree —

that performs only slightly better than random guessing [24, 25]. After training this first

model, the algorithm identifies which data points were misclassified [24]. A second tree is

then trained to correct those mistakes [24]. The subsequent tree focuses even more on the

remaining misclassified points, and the sequence continues in this way. Over time, each

successive tree contributes additional information about the more difficult edge cases [19].
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The final prediction is a weighted combination of all trees in the sequence8 — meaning that

every tree contributes, but the more accurate ones have greater influence [20].

The most well-known variant of this method is Gradient Boosting, which formalizes the

learning process through residuals [24, 26]. After each iteration, the model calculates the

error — the residual between predicted and actual values — and fits the next tree to these

residuals, effectively performing gradient descent in function space [23, 24]. This is the

origin of the term “boosting”: the performance of a weak model is improved through the

directed, cumulative contribution of many such models [24]. Mathematically, the update

step in gradient boosting can be written as:

Fm(x) = Fm−1(x) + γmhm(x) (3.4)

as described in [24]. To illustrate this concretely: suppose the first tree classifies 70% of

the simulations correctly, but struggles with a specific subset — such as configurations with

low detuning and borderline cooling ramps. The second tree would be trained predom-

inantly on those misclassified points, learning patterns that help distinguish them more

accurately [23, 24]. The third tree would continue the refinement, improving the decision

boundary where earlier models had difficulty. The result is a model that performs partic-

ularly well in capturing complex, nonlinear interactions, often achieving higher predictive

accuracy than a random forest — especially when the signal is buried under noise or subtle

in structure [24].

XGBoost, a widely used boosting algorithm, formalizes this optimization with the fol-

lowing objective function:

L(t) =
n∑

i=1

ℓ(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft) (3.5)

8In boosting, each tree’s output is weighted based on its accuracy — better-performing trees contribute
more to the final prediction, and the model aggregates these weighted outputs (e.g., by weighted majority
vote or a weighted sum for regression) [19].
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Here, ℓ is the loss function, ft is the new tree added at iteration t, and Ω(ft) is a regulariza-

tion9 term [19, 23, 24]. That regularization term is typically defined as:

Ω(f) = γT +
1

2
λ

T∑
j=1

w2
j (3.6)

where T is the number of leaves, wj is the score on each leaf, γ penalizes model complexity,

and λ controls L2 regularization [19].10

This increased modeling power comes at a cost [22]. Boosting models — particularly

when run for many iterations or with deep trees — are more prone to overfitting, especially

when the dataset is small or noisy, as is often the case in simulation-driven contexts [23].

Because each tree is trained to fix the mistakes of its predecessor, there is a risk of fitting to

noise unless the process is carefully regularized [19]. To mitigate this, boosting frameworks

include parameters such as learning rate, which governs how much each tree contributes to

the final prediction, and n estimators, which limits the total number of trees [24]. Smaller

learning rates typically require more trees, but tend to yield better generalization by making

updates more gradual [19, 24].

A related concept is shrinkage, which is simply another term for applying a reduced

learning rate — intentionally damping the influence of each tree in the ensemble [19]. This

slows training but often improves model performance. Additional techniques, such as sub-

sampling (training each tree on a random subset of the data) and column sampling (selecting

a random subset of features), introduce further randomness, which helps prevent overfitting

and improves generalization — much like in random forests [19, 20].

From an implementation perspective, modern boosting libraries such as XGBoost, Light-

GBM, and CatBoost have significantly refined the core algorithm to make it faster, more

memory-efficient, and more compatible with categorical or sparse data. These frameworks

9Regularization penalizes model complexity to prevent overfitting, often by discouraging overly large
weights or deep trees [19].

10Also known as ridge regression, L2 regularization adds a penalty proportional to the square of model
weights, encouraging smaller but nonzero values [19, 20].
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incorporate strategies such as histogram-based binning and optimized split-finding to ef-

ficiently train models even on large datasets [22]. While this thesis focuses primarily on

the scikit-learn implementation (GradientBoostingClassifier) for simplicity, these more

advanced tools remain viable for future work aimed at further optimization.

For the purposes of this thesis, boosting offers a different perspective than bagging.

While random forests are generally more stable and forgiving — well-suited for noisy or

rugged parameter spaces — boosting can offer greater precision [19]. It is particularly adept

at uncovering subtle structure and refining classification boundaries, though it requires more

careful tuning and validation [19]. Both methods are therefore considered side-by-side in

this work. Random forests provide reliable baselines and interpretable feature importance

rankings, while boosting may yield sharper resolution in cases where random forests are less

effective [19].

Ultimately, the choice between bagging and boosting is not a binary one. Each method

addresses a different set of tradeoffs. Random forests are fast, interpretable, and highly usable

out-of-the-box. Boosting offers a more refined approach that can deliver superior results

when carefully tuned.11 Given the structure of the problem at hand — high-dimensional,

sometimes sparse, and often sensitive to small perturbations — incorporating both methods

into the modeling pipeline is a natural and effective strategy.

3.2 Interpolation

Once a set of simulation results has been collected — parameter combinations and their

corresponding cost function values — what remains is essentially a sparse, high-dimensional

grid of sampled points. Each point represents a full simulation: a known configuration with a

known outcome. However, there is no information about the vast majority of the parameter

space that remains unsampled. To navigate it effectively, a method is required for estimating

11Boosting models are sensitive to hyperparameters like learning rate and tree depth; improper tuning can
lead to overfitting or underperformance [19, 20].
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outcomes at new, untested configurations. This is the role of interpolation.

At its core, interpolation refers to estimating values between known data points. For

instance, if the outcomes of simulations are known at tickle frequencies of 420 and 430 kHz,

it may be reasonable to infer something about the behavior at 425 kHz. In high-dimensional

settings — especially when interactions between parameters are nonlinear or lack smoothness

— this process becomes significantly more complex. In machine learning contexts, interpo-

lation typically involves fitting a continuous model — such as a Gaussian process, a radial

basis function (RBF) network, or a shallow neural network — that learns the shape of the

cost surface and makes predictions not just at sampled points, but across the entire input

domain [27, 28]. For example, an RBF model approximates the function as a weighted sum

of localized basis functions:

f̂RBF(x) =
N∑
i=1

wi ϕ(∥x− xi∥) (3.7)

Meanwhile, Gaussian process regression defines a posterior mean function conditioned on

prior observations [26, 27]:

f̂GP(x∗) = k(x∗, X)K−1y (3.8)

where k(x∗, X) is the covariance vector between the new point x∗ and training inputs X, K

is the covariance matrix of X, and y is the vector of observed outputs [19, 23].

These models often include uncertainty estimates, which is particularly valuable in op-

timization: they indicate not only the predicted value of the cost function but also the

confidence in that prediction.

It is important to distinguish interpolation from classification models such as random

forests or boosted tree ensembles. While those models are designed to provide categorical

decisions — for example, whether a configuration is “good” or “bad” — interpolation aims

to reconstruct the continuous shape of the underlying function, often the cost surface, across
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unsampled regions [27]. This makes interpolation particularly well-suited for gradient-free

optimization, sensitivity analysis, or Monte Carlo sampling [19, 27]. Once a promising

region is identified, interpolation enables a finer exploration of that space without requiring

simulations at every possible point [19, 27].

In summary, classification models highlight which simulations warrant further attention,

while interpolation models provide insight into the behavior between them. Both are inte-

gral to a complete optimization pipeline and, when used in combination, offer a far more

comprehensive view of the parameter space than either method alone.

3.3 Monte Carlo Simulation

Monte Carlo simulation is another tool that fits naturally into this framework, though it

operates somewhat differently from the other methods discussed thus far. It is not a learning

algorithm — it does not build a predictive model or attempt to classify outcomes — but

instead offers a probabilistic perspective for understanding uncertainty. In particular, it

provides a principled way to explore how randomness in the system affects the outputs of

interest, which is especially relevant in this case, where the simulation of scattering signals

includes inherent variability [29].

The core idea of Monte Carlo methods is to approximate statistical properties of a sys-

tem through repeated random sampling [19, 29]. In its most basic form, the Monte Carlo

estimator of an expectation is written as:

E[f(X)] ≈ 1

N

N∑
i=1

f(xi) (3.9)

where xi ∼ p(x) are independent samples drawn from some distribution p(x), and f(x) is

the function being averaged [29].

In the context of this thesis, Monte Carlo simulation is used to probe the stochastic

variation in the photon scattering signal — which, even under fixed simulation parameters,

40



can fluctuate due to underlying probabilistic processes. Rather than assuming that each

simulation produces a single, deterministic outcome, the output is treated as drawn from a

distribution. By running multiple simulations with identical or slightly perturbed inputs and

collecting the resulting scattering values, it is possible to empirically estimate the distribution

of possible outcomes and, from that, derive error bars, confidence intervals, or variance

estimates for each parameter configuration.

This becomes essential when evaluating whether a given configuration is consistently

“good” — meaning it reliably yields a strong, slope-heavy signal — or if a favorable result

occurred due to chance. Monte Carlo sampling enables a distinction between robust config-

urations and those that perform well only occasionally, which is critical for both classifier

training and optimization strategies. It also provides a way to simulate the noise character-

istics of a real experiment, where photon counts fluctuate between runs due to quantum shot

noise, detection inefficiency, or thermal effects. Incorporating that variability into the model

— rather than ignoring it — results in a learning process that is more robust and realistic.

Samples may be drawn uniformly across the parameter space, but are more commonly

clustered around regions of interest — using biased sampling strategies to focus on neigh-

borhoods near decision boundaries or where the cost function changes rapidly. This targeted

approach allows for better resolution of subtle transitions and more accurate quantification

of uncertainty where it matters most.

Thus, while Monte Carlo simulation does not perform classification or interpolation di-

rectly, it supports the two by enriching the dataset. It improves understanding of the stochas-

tic structure of the simulation output, adds statistical weight to cost function evaluations,

and ultimately facilitates more informed reasoning — not only about what the model pre-

dicts, but how 12 those predictions should be.

12Confidence here refers to the estimated reliability of a prediction, often quantified using statistical
measures such as confidence intervals or empirical variability across repeated simulations [20].
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3.4 K-Nearest Neighbors (KNN)

K-Nearest Neighbors (KNN) is the final algorithm covered in this thesis, and despite its

simplicity, it is one of the most effective tools in the modeling pipeline. The idea behind

KNN is conceptually straightforward: when classifying a new data point — for example, a

new simulation whose outcome is not yet known — the algorithm examines the k closest

examples from the existing dataset (where the outcomes are known) and assigns a label

based on a majority vote [19]. If most of those nearby examples were “good” simulations,

then the new one is likely to be good as well. If most were “bad,” it is likely to be bad. No

trees, no weights, no hidden layers — just distance and counting.

Figure 3.3: Simple KNN classification with k = 5. KNN classifies the black query point by
examining its five nearest neighbors (circled). Since three are red and two are blue, the point
is classified as red by majority vote.

What makes KNN powerful is that it operates entirely off the training data — there is no

explicit “training” step. The algorithm does not build a model or fit parameters. Instead, it

stores all the examples and performs computations only at prediction time. This makes KNN

non-parametric and instance-based, meaning it adapts naturally to the local structure of the

data, even in highly irregular or nonlinear regions [19, 20]. Distance is typically measured in
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Euclidean terms (i.e., straight-line distance through parameter space), which is defined as:

d(x, x′) =

√√√√ n∑
i=1

(xi − x′
i)
2 (3.10)

but more tailored metrics, such as Manhattan distance,13 can be used depending on the

problem domain [19].

In cases where a weighted prediction is appropriate — for instance, when closer neighbors

should influence the outcome more than distant ones — the following rule is used to compute

a weighted average of neighbor outcomes:

ŷ =

(
k∑

i=1

yi/d(x, xi)
2

)/(
k∑

i=1

1/d(x, xi)
2

)
(3.11)

Here, yi is the outcome of the i-th neighbor, d(x, xi) is the distance between the query point

x and neighbor xi, and closer neighbors contribute more heavily to the prediction [19].

In the context of this thesis, KNN is useful both as a lightweight classifier — to quickly

assess whether a new parameter set resembles other successful configurations — and as a

diagnostic tool. If KNN predictions begin to deviate significantly from those produced by

more complex models, it may indicate that those models are overfitting, or that the local

data structure exhibits higher complexity than anticipated [19]. In either case, KNN serves

as a valuable sanity check — simple, direct, and effective when applied with care. Although

KNN can be misleading if used improperly, it will be employed in ensemble with the other

algorithms discussed to improve robustness and yield clean results [19, 23].

13Manhattan distance is the sum of the absolute differences between coordinates, like navigating a grid-like
city.
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3.5 Why not MLOOP?

When we first considered machine learning-based optimization for this system, a natural

question arose: why not simply use MLOOP?14 It’s already integrated into QLICS, has a

track record of success in other experimental platforms such as Bose–Einstein condensate

production, and is explicitly designed to optimize physical systems using online Gaussian

process regression [31]. In fact, our lab had already used MLOOP for basic parameter tuning

tasks. So what changed?

The short answer is that while MLOOP is a powerful tool, it is not well suited to the

specific goals of this thesis. MLOOP excels at locating a global minimum of a cost function

using a relatively small number of evaluations [31]. It performs especially well when the

cost surface is smooth, noise is moderate, and the parameter space is not excessively high-

dimensional [30, 31]. Under these conditions, its hybrid approach — combining Gaussian

processes with neural network-based sampling — allows it to converge quickly toward an

optimal point [30]. This is ideal when the primary goal is to identify a single configuration

that maximizes experimental performance [19].

However, that is not the goal here. This project is not about finding one good configu-

ration — it’s about understanding why certain configurations work at all. The focus is on

building generalizable models that capture the structure of the parameter space and distin-

guish reliably successful regions from unstable or unreliable ones. In particular, this work

aims to characterize the broader geometry of high-performing areas, not just their global

extrema. After all, if we identify a single configuration with a very low cost but find that its

surrounding neighborhood consists of poor outcomes, then any small drift in the hardware

— a beam alignment shift, a voltage fluctuation — could push the system into failure. That

isolated optimum might look promising on paper, but in practice, it’s fragile.

This is the crux of the problem: optimization alone doesn’t guarantee robustness. What

14MLOOP stands for Machine Learning Online Optimization Package — a toolkit for real-time experi-
mental optimization using techniques like Gaussian process regression and evolutionary strategies [30, 31].
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we really want are regions of parameter space that are both high-performing and stable —

plateaus rather than sharp peaks [19, 30]. That requires more than just a minimum-finding

algorithm. It requires a model that can learn the topology of the space, assess the density

and quality of surrounding configurations, and generalize across nearby variations. MLOOP

is not built for that kind of analysis.

Additionally, MLOOP offers limited interpretability. While it can propose new parameter

combinations, it doesn’t explain why those combinations are effective. It provides no insight

into which parameters are most influential, how sensitive the outcome is to each one, or how

the system responds to small perturbations. For a project focused not just on performance

but also on physical understanding and downstream generalization, this is a fundamental

limitation.

Thus, the framework developed in this thesis takes a different approach. Instead of

treating the system as a black-box cost function to minimize, it frames the problem as

a classification task: which configurations produce “good” outcomes, and why? It builds

models that can interpolate across the parameter space, identify smooth high-performing

regions, and expose which features matter most. The aim is not to replace MLOOP, but

to answer a different question — one that depends as much on structure and stability as it

does on optimization.

3.6 Summary

Each of the algorithms covered above — random forests, boosting, interpolation methods,

Monte Carlo simulation, and KNN — offer different angles of attack on the same core prob-

lem: how can we use past simulation data to predict, classify, and ultimately optimize future

experimental configurations? Each one comes with its own strengths and weaknesses, and

their performance will depend on the structure and quality of the data we feed them. While

this chapter has stayed grounded in theory, the following sections will tie these concepts di-
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rectly to the trapped ion simulation framework — examining how each method contributes

to improving number resolution, increasing dissociation accuracy, and reducing experimental

trial-and-error in practice. That brings us to the next step: assembling these tools into a uni-

fied modeling framework. The following chapter outlines how each algorithm is implemented

in practice, how they interact, and how their outputs guide the experimental optimization

process from end to end.
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Chapter 4

Cross-Algorithm Model

4.1 Framework Overview

In the previous chapter, we discussed the theoretical foundations behind various algorith-

mic tools used throughout this study. Having established that background, the goal of this

chapter is to define the full architecture of our modeling framework — not only detailing the

technical components of each algorithm, but also showing how they work together in prac-

tice. We provide a summary flowchart, a breakdown of model objectives, and representative

outputs that illustrate how predictions and optimizations are made.

Before diving into implementation, it is essential to articulate the core objectives of the

system:

1. To construct a robust predictive model capable of classifying any new parameter con-

figuration as good or bad, while providing meaningful probability estimates and local

stability metrics.

2. To guide the experimenter toward improved configurations using optimization paths
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that are informed by both global learning and local geometric reasoning.1

These dual goals ensure that the system is useful not only for retrospective classification but

also for prospective tuning and decision-making. The architecture is designed to answer two

recurring experimental questions: How good is this configuration? and What’s the next best

step I can take to improve it?

To operationalize these goals, we first need to define how “goodness” is quantified. This

is accomplished via a scalar cost function, which evaluates the quality of each configuration

based on its dissociation behavior — particularly its ability to support clear number res-

olution across successive scattering transitions. As previously discussed, this resolution is

critical for tracking dissociation progression and measuring µ over time. Therefore, the ini-

tial cost function should focus on numerical signal quality — for instance, penalizing shallow

slopes or non-monotonic scattering behavior.

However, the key insight is that there is no universal cost function suitable for all exper-

imental goals. Depending on the context, one might prioritize sharp transitions, robustness

to noise, or consistent slope across all steps. For this reason, the cost function must remain

flexible and user-defined. Later results will explore several candidate cost functions that re-

flect different priorities: some are strictly derived from features of the scattering trace (e.g.,

slope and R2), while others include probabilistic and stability-aware modifications. For now,

we recommend the following three-step strategy for practical implementation:

1. Define a base cost function. This should quantify the sharpness and consistency

of the scattering trace, and will typically combine normalized slope and R2 values. As

we will show in future sections, these features can be normalized2 to lie within a fixed

range (e.g., [0, 100]) to support consistent comparisons across the dataset.

1Combining global learning with local geometric reasoning enhances optimization efficiency by balancing
broad exploration with precise exploitation. This synergy has proven effective in complex optimization tasks,
as demonstrated by Zhou et al., who integrated global and local surrogate models to accelerate evolutionary
optimization [32].

2Normalization refers to the process of rescaling numerical values to a common range, often [0, 1] or [0,
100], to allow consistent comparison across different features or units.
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2. Apply percentile-based classification. To assign binary labels, we recommend

choosing a percentile cutoff based on the cost distribution — for example, classifying

the top 50% (lowest cost) as good and the rest as bad. While the exact split can

be tuned later, using a percentile-based method ensures that initial labels reflect the

relative quality of configurations, rather than relying on arbitrary thresholds.

3. Define an extended cost wrapper3. This secondary cost function can incorpo-

rate additional terms, such as Monte Carlo-based uncertainty or local KNN stability.

These modifiers weight the base cost function based on how robust or trustworthy a

configuration is under repeated trials or in its surrounding neighborhood. This layered

approach reflects the reality that experimental priorities shift over time — and that

not all “good” configurations are equally reliable.

This structured but adaptable framework ensures that classification decisions are grounded

in physical observables, while still allowing for flexibility and refinement as experimental

goals evolve. In the following sections, we outline the model layers that make this func-

tionality possible, including supervised learning, Monte Carlo variance modeling, and local

interpolation-based robustness scoring.

Now that we have covered the theoretical background of the algorithms we incorporate

in Chapter 3 and laid out the basic framework of our model, we can dive into the technical

details:

4.2 Model Architecture and Functionality

First, we must explicitly define what we mean by ”build a model.” In prior sections, we have

described a machine learning algorithm as a dynamic learner — conceptually, a new lab

partner being onboarded to understand and navigate the experiment alongside us. Building

3A wrapper here refers to a higher-level function that takes the base cost and modifies it with additional
terms or conditions, effectively ”wrapping” extra logic around the original calculation.
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on this analogy, our high-level objective is to develop a model that captures the full dynamics

of the system and enables targeted exploration of the experimental feature space. To achieve

this, we require not only a machine learning model capable of accurate classification, but

also the incorporation of statistical methodologies that account for uncertainty and local

stability within different regions of the parameter space. The complete system is composed

of three tightly integrated components: (1) a trained classification model (Random Forest or

XGBoost) that learns global structure from simulation data, (2) a Monte Carlo extension that

captures stochastic variability across repeated trials, and (3) a local stability framework based

on K-Nearest Neighbors (KNN) and Radial Basis Function (RBF) interpolation. Together,

these layers form a probabilistic, interpretable, and highly adaptable decision engine — one

that supports both evaluation and optimization of experimental configurations in real time.

4.2.1 Classification Model

We use both Random Forest and XGBoost classifiers in tandem, as each brings distinct

advantages: Random Forests reduce variance through bagging, while XGBoost minimizes

bias via sequential boosting. The dataset is split into 80% training and 20% testing sets,4

and both models are trained on identical features — RF drive voltage, endcap voltage, and

modulation amplitude — with binary labels derived from cost-function-based thresholds.

Hyperparameters (max depth=6, n estimators=300, min samples leaf=4 for Random For-

est; learning rate=0.1, max depth=5, n estimators=250 for XGBoost) were selected via

a combination of grid search and randomized search to maximize F1-score on a subset of

validation data. Either model may be deployed depending on the user’s priorities, and both

are seamlessly integrated into the broader system pipeline.

4This is a standard practice for most models to ensure sufficient data for training while preserving a
representative holdout set for evaluation.
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4.2.2 Monte Carlo Extension

To account for stochastic variability in the simulation environment, we run each parameter

configuration multiple times (with randomized initial conditions inherently incorporated in

QLICS and LAMMPS). This yields an empirical distribution of outcomes for each setup,

from which we compute mean values, standard deviations, and class probabilities. These

repeated trials allow the model to assign confidence estimates to predictions and identify

configurations with unstable or unreliable behavior. All Monte Carlo outputs are prop-

agated through the classification and cost function pipelines, enabling uncertainty-aware

optimization and filtering. This approach avoids any assumptions about the shape of the

underlying distribution and instead relies purely on empirical variance.

4.2.3 KNN-Based Local Interpolation

We implement a local manifold-based interpolation framework that intelligently combines

multiple components to evaluate the robustness of a given configuration. This method

grounds itself in real, observed data using K-Nearest Neighbors (KNN), constructs geo-

metric shells (spheres) around a query point to enable structured, distance-based spatial

sampling, and applies Radial Basis Function (RBF) interpolation to estimate both class la-

bels and cost values at interpolated points on those shells. By integrating these elements,

the method defines a neighborhood-informed probability score that reflects how robust or

stable a given configuration is likely to be in its local region of the parameter space — a prin-

cipled, geometric, and fully implementable approach for quantifying class robustness under

uncertainty.

The implementation proceeds as follows. First, all parameter data is standardized,5 and a

NearestNeighborsmodel is fit to the scaled dataset. Two RBFInterpolatormodels are then

trained — one on binary class labels (mapped to 0 and 1) and another on scalar cost values

5That is, each feature is rescaled to have zero mean and unit variance, so all input dimensions are on the
same scale.
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Figure 4.1: A visual depiction of the local manifold-based interpolation framework. A query
point (black square) is surrounded by three concentric spheres, each centered at increasing
radii based on real neighbors (blue dots). For each radius, four additional points (red dots)
are uniformly sampled on the sphere surface and classified using RBF interpolation. This
results in five total points per shell — one real, four synthetic — and fifteen points in total.
These local samples are used to compute a good-to-bad ratio, quantifying the query point’s
stability within its neighborhood.

— using thin-plate spline kernels.6 For a given query point, we identify its three nearest

neighbors with unique distances, construct hyperspheres of equal radii around the query,

and randomly sample synthetic points on each shell, as shown in Figure 4.1. The class labels

of these synthetic points are then estimated using the RBF interpolation model and combined

with the real neighbors to compute a good-to-bad ratio, defined as the number of “good”

classifications divided by the number of “bad” classifications among the local neighbors —

that is, Good-to-Bad Ratio = #Good/#Bad. This score serves as a quantitative measure

of local stability: points with many “good” interpolated neighbors are considered stable,

while those near boundaries yield lower scores. The result is an interpretable, data-driven

metric that complements global model predictions and Monte Carlo uncertainty estimates,

6The thin-plate spline kernel is a smooth, radially symmetric function that minimizes bending energy,
making it well-suited for interpolation tasks requiring smooth surfaces across multidimensional space [33].
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enhancing our ability to assess configuration quality in both absolute and relative terms.

4.3 Unified Output and Example

When these three systems are combined, the result is a robust and highly informative mod-

eling framework.7 For any given parameter configuration, the system outputs:

→ A binary classification (good or bad)

→ A classification probability based on Monte Carlo variance estimates of key metrics

→ A KNN-based stability score using interpolated neighbor sampling

Beyond static evaluation, the model also includes a find shortest path to good rou-

tine. This identifies the closest good configuration in the dataset (using a KD-tree),8 ranks

the parameter changes needed to reach it based on feature importance, and recommends a

minimal adjustment sequence. Continuous interpolation along this path can be used to esti-

mate success probabilities along intermediate points, supporting gradient-aware exploration.

Together, these tools provide an end-to-end workflow for simulation-informed experi-

mental control. The model classifies new configurations, evaluates how confidently they

succeed, estimates their local robustness, and proposes optimal adjustments to move toward

better performance — all while accounting for uncertainty and system stochasticity. This

multi-tiered structure enables actionable insights, even in the presence of noise and nonlinear

parameter interactions.

To evaluate the quality of each simulation trace, we define an initial composite cost

function based on two features: the slope of the dissociation trace and the R2 value of a linear

fit to that trace.9 A steep negative slope is desirable, as it indicates a sharp drop in signal — a

7Corresponding Python code for these models will soon be posted on my GitHub page.
8A KD-tree (k-dimensional tree) is a spatial data structure used to efficiently find nearest neighbors in

multi-dimensional space [19, 34].
9Each trace is composed of the sequential scattering values (photon counts), thus the line of best fit is fit

through these points using simple OLS regression [19].
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hallmark of strong motional coupling and thus a clearer dissociation signature. Meanwhile,

a high R2 value reflects a consistent, monotonic trend rather than random fluctuations,

suggesting that the system behavior is coherent rather than noise-dominated.

To combine these two features into a unified score, both must be normalized. The slope

is normalized such that the most negative slope — representing the strongest signal — is

assigned a value of 0, and the most positive slope (i.e., the weakest or inverted signal) is

assigned a value of 100. This ensures that lower values correspond to better experimental

outcomes. The normalization is defined as:

Slope norm =

(
Slope− min slope

max slope− min slope

)
· 100, (4.1)

where min slope and max slope denote the most negative and most positive slope values in

the dataset, respectively.

The R2 value is treated inversely: since higher values are better, we subtract each from

1 and scale accordingly:

R-sq norm = (1− R-sq) · 100. (4.2)

This transformation ensures that, like the slope, lower normalized R2 values correspond to

better fits, aligning the two features under a common optimization direction.

Finally, the normalized features are combined into a single cost function via a weighted

sum, emphasizing the slope more heavily (80%) while still incorporating trace consistency

(20%). The full cost function is:

Cost = 0.8 · Slope norm+ 0.2 · R-sq norm. (4.3)

This formulation balances the sharpness and reliability of the dissociation signal, providing

a meaningful scalar target for classification and optimization tasks throughout the modeling

pipeline. The decision to weight the slope more heavily stems from its greater direct relevance
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to dissociation detection: a steep slope reflects the physical transition we aim to resolve,

whereas a high R2 simply ensures that the trend is not noisy or erratic.

It is important to emphasize that this is a preliminary cost function — simple and

interpretable, but not exhaustive. Future sections will introduce more nuanced formulations

that incorporate uncertainty quantification, multi-stage behavior, and KNN-based stability

scores. These richer cost functions aim to better capture the complexity of dissociation

behavior in the presence of noise and variability. For the current modeling stage, however,

this 80/20 formulation offers a transparent, intuitive starting point that aligns well with our

physical expectations.

Using the cost function, we now define a binary classification task to train our supervised

machine learning model. Specifically, we set a threshold at the 20th percentile of all cost

values — a conservative cutoff that isolates the top-performing 20% of configurations as

good. All remaining simulations are labeled bad.10

Suppose now that we test our two-part model on the parameter set (Voltage = 58.9,

Endcap Voltage = 2.0, Modulation Amplitude = 0.8). The classification model pre-

dicts this configuration to be classified as bad, with a high estimated probability of 0.972

that it remains bad under stochastic perturbations derived from empirical noise. The interpo-

lated neighbor good-to-bad score is also low at 0.07, further indicating that this configuration

is locally unstable with respect to improvement.11

To improve the system, the model recommends transitioning to the nearest known good

configuration, which is (Voltage = 58.7, Endcap Voltage = 2.0, Modulation Amplitude

= 0.8), as shown in the flowchart below. The only suggested adjustment is a minor decrease

in Voltage from 58.9 to 58.7, while keeping the other two parameters fixed. This adjustment

is derived based on the relative feature importances detailed in Section 3.1.1, prioritizing

changes to the most influential parameter first.

1020th Percentile Cutoff for Cost Function in this case: 32.3638.
11In this context, “improvement” refers to the likelihood that small, local parameter changes might yield

a better (i.e., “good”) outcome.
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Input Configuration

Voltage = 58.9, Endcap Voltage = 2.0, Modulation Amplitude

= 0.8

Predicted classification: bad

Estimated probability it stays classified as bad: 0.972

Interpolated neighbor good-to-bad score: 0.07

⇓

Recommended nearest good configuration: Voltage = 58.7, Endcap Voltage = 2.0,

Modulation Amplitude = 0.8

Change Voltage from 58.9 → 58.7

⇓

New Configuration

Voltage = 58.7, Endcap Voltage = 2.0, Modulation Amplitude

= 0.8

Predicted classification: good

Estimated probability it stays classified as good: 0.884

Interpolated neighbor good-to-bad score: 0.15

Evaluating this new configuration, the model predicts it as good, with an estimated prob-

ability of 0.884 that it remains classified as good under empirical noise perturbations. This is

a strong result — a high probability that the system will maintain desirable behavior despite

stochastic fluctuations. However, the interpolated neighbor good-to-bad score remains low

at 0.15, suggesting that the configuration lies in a fragile region of parameter space: while it

performs well in isolation, its immediate neighbors are mostly bad. This contrast highlights

the dual role of our two-part model — assessing both robustness to noise and structural
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resilience.

This raises a natural question: what physical properties of the system make it so sensitive

that even a slight voltage change can produce such a dramatic shift in classification? This

kind of instability often arises from the sharpness of motional resonances in the system. Near

a secular frequency, even a small change in trap voltage can shift the resonance condition

dramatically, either aligning modulation with the motional mode — enhancing dissociation

visibility — or missing it entirely, resulting in a flat or noisy trace. These transitions are not

gradual: due to the steep frequency response of the crystal to modulation when coupling is

strong, the cost landscape can exhibit rapid drops or jumps in quality over narrow voltage

intervals.12 In this case, the steep transition likely corresponds to a narrow resonance window,

where constructive motional excitation temporarily improves signal clarity. Slightly detuning

from this window — by adjusting the RF amplitude or endcap voltage by even a fraction

of a volt — can suppress this excitation and degrade number resolution, leading to sharp

classification boundaries.

To interpret this situation constructively, we consider how different model outputs can

be brought together to guide user decisions. Essentially, what the above result tells us is

that even though this move places us in a good configuration, it may still lie near a decision

boundary — a region where small, unmodeled perturbations could lead to reclassification or

degraded performance. In such cases, and as hinted in earlier discussions of cost design, it

may be advisable to re-evaluate the initial cost function or introduce a higher-level cost wrap-

per that integrates additional model outputs. Recall that the user retains full control over

what qualifies as “good,” and can manually adjust thresholds or explore more conservative

regions of parameter space. One way to implement this would be to modify the cost function

to reward not only strong slope and R2 values, but also high neighbor stability scores —

thereby prioritizing configurations that perform well and lie within robust neighborhoods.

To incorporate neighbor stability into the cost in a nonlinear way, we introduce a multi-

12We demonstrate this via scattering heatmap in Section 5.2.1.
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plicative weighting scheme that penalizes instability rather than simply summing costs. The

original cost function remains:

Slope norm =

(
Slope− min slope

max slope− min slope

)
· 100, (4.4)

R-sq norm = (1− R-sq) · 100, (4.5)

Base Cost = 0.8 · Slope norm+ 0.2 · R-sq norm. (4.6)

We then extend this formulation to incorporate a neighborhood sensitivity term. To account

for neighborhood robustness, we introduce a multiplicative penalty term based on the inter-

polated good-to-bad score. Because higher scores represent stronger local support, we invert

the stability score to penalize fragile configurations. The final wrapped cost becomes:

Wrapped Cost =
Base Cost

1 + α · Stability score
, (4.7)

where α is a tunable weighting parameter that controls how strongly the neighborhood score

impacts the final cost (e.g., α = 1). This formulation ensures that as the stability score

increases, the total cost decreases nonlinearly — amplifying the value of configurations that

are both performant and robust to local perturbations. For example, if the base cost is 70

and the neighbor score is 2.0, the final cost would be:

Wrapped Cost =
70

1 + 2.0
= 23.33,

reflecting a highly favorable configuration. Conversely, unstable points (with neighbor scores

near 0) retain their full base cost or worse, discouraging the model from selecting fragile

configurations.

This cost wrapper, while simple, allows the experimenter to balance fit quality with
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stability — a key consideration when transitioning from exploratory modeling to physical

implementation. By surfacing both classification and neighborhood risk, the model offers

a level of interpretability and flexibility that would otherwise be difficult to achieve. This

process makes the search for optimal configurations more transparent and principled, allow-

ing for informed refinement toward not only high-performing, but also stable and reliable

outcomes.

Taken together, these tools form a flexible, modular architecture for navigating the feature

space of trapped ion experiments. By combining classification, probabilistic scoring, and local

interpolation, the model not only identifies promising configurations, but also quantifies their

surrounding risk — enabling smarter, more informed optimization than blind trial-and-error.

With the modeling infrastructure in place, we now shift our focus to the empirical results.

The next chapter begins by analyzing key physical patterns that emerge from the simulation

data itself, independent of any machine learning, before moving on to a full performance

evaluation of the modeling framework introduced here.
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Chapter 5

Results

This chapter presents the major findings of this study, structured into two complementary

parts. We begin by analyzing the raw simulation data from a deterministic perspective,

identifying core physical trends in dissociation behavior, number resolution, and parameter

dependencies. We then extend this analysis by incorporating stochasticity through Monte

Carlo methods — repeatedly simulating the same configuration to model variability and

establish a distribution over possible outcomes. This allows us to identify not only average

performance, but also the robustness and reliability of each configuration under noise. Based

on this framework, we suggest candidate solutions that balance performance with stability.

In the second part of the chapter, we turn to the machine learning models themselves —

evaluating their predictive accuracy, classification fidelity, and practical utility in proposing

new configurations. Although distinct in focus, these two parts form an integrated loop: the

physics insights inform model design, and the model results, in turn, validate and refine our

physical understanding.

5.1 Logistics

It is helpful to conceptually separate the problem of detecting the first dissociation event

from the broader challenge of achieving full number resolution. The first step — going from
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zero to one O+ ion in the trap — is not necessarily easier in a signal-to-noise sense, but it

is the most logically constrained and experimentally accessible starting point. When no O+

ions are present, the background is as clean as it will ever be: any observed modulation-

induced change in Be+ fluorescence must be attributable to the presence of a newly formed

O+ ion. This makes the first step a useful benchmark. It allows us to validate our dissociation

protocol, test whether modulation at the expected secular frequency causes a measurable

change in the signal, and tune core parameters like modulation amplitude and trap voltages

in a relatively low-complexity regime. If we can’t reliably detect the formation of the first

O+ ion, then attempting to distinguish two from three — or six from seven — is premature.

So while the first step isn’t inherently more visible, it serves as the foundation for everything

that follows.

Once we’ve established that the system can detect the onset of dissociation, the challenge

becomes finer-grained: can we resolve how many O+ ions are present? This is what we mean

by number resolution — the ability to distinguish between different O+ counts based on the

structure of the Be+ fluorescence trace. Unlike the binary jump from zero to one, these

higher-number transitions are subtler. Each additional O+ ion produces a smaller marginal

effect on the motional coupling and, in turn, the Be+ fluorescence signal. The slope of

the dissociation trace may still change, but more gradually, and with greater sensitivity

to thermal noise, trap alignment, and subtle parameter interactions. In this regime, simple

heuristics break down, and our models must learn to identify not just the presence of a signal,

but structured variation across a noisy, high-dimensional space. Achieving reliable number

resolution is essential for extracting quantitative information about dissociation dynamics —

and by extension, for improving the precision of molecular transition measurements. It’s the

difference between saying “something happened” and saying “exactly this many dissociation

events occurred,” which is critical for the spectroscopy goals that motivate the experiment.

With this motivation established, we now turn to the raw simulation outputs to identify

how dissociation behavior emerges, how it is shaped by control parameters, and what this
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reveals about the physical structure of the system. To build a comprehensive understanding,

we begin by examining the physical structure of the data itself — before any learning occurs.

5.2 Physics Results

Throughout the following sections, we present results in a logical and chronological manner.

Therefore, it is important to begin with our starting point in Figure 5.1.

Figure 5.1: Number resolution for a total of ten ions in the trap, where green represents
the count of O+ and red represents the count of molecular oxygen as compared to an off-
resonance baseline in black. Note also how O+ offers much better number resolution than
O+

2 , due to its mass being more similar to Be+. Due to this property, most analysis will be
performed on the atomic oxygen signal rather than the molecular oxygen signal [3].

To better understand the contribution of each species to the overall resolution pattern,

we isolate the atomic oxygen signal and examine it independently. When we isolate the O+

signal from Figure 5.1, we are left with the plot in Figure 5.2.

With a general sense of the dissociation signal in hand, we now zoom into the most
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Figure 5.2: Isolated atomic oxygen signal from Figure 5.1 with a fitted line of best fit.
Although the line of fit itself has a significant negative slope and the points are clustered
relatively closely to the line, note that the actual number resolution is poor. Try to differ-
entiate the signal between 3 O+ and 5 O+, for instance, or between 6 and 8 O+ in the trap.
Though overall this example appears solid, these crucial flaws represent the resolution we
wish to gain through our analysis.

fundamental transition: the detection of a single dissociation event.

5.2.1 Single Dissociation Step

As we turn to the single dissociation step, in which we aim to detect the first dissociation

event from no O+ to one O+ in the trap, we must explicitly define what a good outcome is.

Since we simply wish the minimize the scattering signal as much as possible to resolve it from

the baseline, we base good on an arbitrary cutoff scattering value. Essentially, classification

is based upon a simple threshold function, where all values above cutoff c are classified as
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”bad” and all values below c are labeled as ”good” outcomes.1 Note that the thing being

classified, as mentioned throughout Chapter 4, is the set of parameters corresponding to the

outcome, not the outcome itself.

As discussed in Section 3.1.1, a crucial advantage of Random Forest models is their ability

to generate a feature importance scale which lists explicit percentage values of “how impor-

tant” each feature in the model was for classification (more information in Section 3.1.1).

Instead of blindly sampling the entire parameter space of potential configurations, we con-

ducted initial Random Forest classification to determine which features to sample most

closely. The resulting model indicated that voltage, endcap voltage, and modulation ampli-

tude were the primary drivers of scattering signal decrease among all possible features.2

This data-driven insight aligns well with theoretical expectations from ion trap physics.

Recall that the RF and endcap voltages together define the radial and axial confinement of

the trap, and thus determine the overall shape and spatial extent of the ion crystal. A higher

endcap voltage, for instance, compresses the crystal along the trap axis, while increased

RF amplitude strengthens radial confinement [3]. These voltage settings directly influence

the equilibrium positions of ions, particularly the spatial separation between species with

different charge-to-mass ratios. Because dissociation is detected indirectly — via motional

coupling between O+ ions and the laser-cooled Be+ — the geometry of the crystal becomes

critically important. When O+ ions are tightly confined and positioned closer to the Be+

core, their motion perturbs the Be+ ions more strongly, producing a clearer fluorescence

signal. Conversely, if the crystal is too elongated or the species too far apart, this coupling

weakens, and dissociation events become harder to detect. Optimizing the trap voltages is

therefore a key lever for maximizing the signal contrast associated with single or multiple

dissociation events. In addition to the trap voltages, the modulation amplitude is another

1This differs from the percentile-based cutoff used in Chapter 4. Here, since each simulation yields only
a single scattering value — which directly represents the cost — applying a fixed numerical threshold is
equivalent in practice to using a percentile, and simplifies evaluation.

2Here, “all possible features” refers to the quantities listed in the annotated configuration file used for
simulation input.
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crucial parameter for dissociation detection. A sufficiently large modulation amplitude is

required to drive detectable motion in the O+ ions, which in turn perturbs the Be+ ions

through Coulomb coupling. However, if the amplitude is too high, it can destabilize the

crystal or blur the dissociation signal, so it must be carefully tuned to maximize sensitivity

without degrading signal fidelity.

To probe this connection more directly, we fix the majority of parameters and conduct

a controlled sweep over the trap voltages. We generate configuration files over a range of

plausible RF voltages and endcap voltages3 , while holding the modulation frequency and

amplitude fixed. As discussed in Section 1.3.1, the modulation frequency is a function of both

the RF and endcap voltages, as it depends on the resulting secular frequencies of the trapped

ions. Because resonant excitation occurs only when the modulation frequency matches the

corrected radial secular frequency,

ωx,y =

√
ω2
r −

ω2
z

2
, (5.1)

only configurations that satisfy this resonance condition will result in strong motional cou-

pling and, consequently, minimal Be+ fluorescence due to Doppler broadening [1, 5]. This

means the modulation frequency must be precisely matched — or “dead on” — to the secular

frequency of the target species (O+) for scattering to reach a minimum. We fix the mod-

ulation frequency at 387000 kHz rather than calculating it for each individual parameter

combination. Given that the lowest scattering is achieved on-resonance, we expect to see a

narrow ridge of low-scattering points across the voltage–endcap grid. Even slight deviations

in voltage or endcap voltage shift the secular frequency enough to significantly diminish the

resonance effect, causing scattering to increase. This sharp dependence makes an observed

ridge both a diagnostic tool and a tuning aid: it enables fine-grained adjustment of the

trap configuration to align the modulation frequency with the system’s natural motional

3These ranges are determined based on the experimentally validated stability curve shown in Wolfgang
Paul’s paper: [35].
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frequencies.

Figure 5.3: Heatmap visualization of scattering signal for various combinations of voltage
and endcap voltage. In this heatmap, darker shades of blue represent scattering values in-
creasingly close to the baseline, whereas values that are very light (or even white) correspond
to the largest decreases in photon count from the baseline. Note that pink values correspond
to simulations that threw errors, i.e. trap parameters violated stability conditions [35].

Figure 5.3 encapsulates the correct relationship: indeed, only a specific ”streak” of

voltage-endcap voltage pairs results in the lowest scattering signal. However, notice that

this white streak corresponds to configurations in the range of a voltage of 39.0V and end-

cap voltage of 2.0V.

Suppose we calculate the resonance frequency corresponding to a voltage of 39.5V and

endcap voltage of 2.0V, values which correspond to one of the lowest (most white) scattering

signals in Figure 5.3. Note that the RF Voltage (shown along the x-axis) is the peak-

to-peak value, and thus we must halve it for input into the expression for q, so we set

V0 =
39.5
2

= 19.75V.

First, from equations drawn from the introductory chapter, we compute the q-parameter:

q =
2e(2V0)

mr20ω
2
=

2 · (1.602× 10−19) · 2 · 19.75
(2.66× 10−26) · (0.00125)2 · (2π · 11.04× 106)2

⇒ q ≈ 0.0633
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Next, the radial secular frequency ωr is:

ωr =
qω

2
√
2
=

0.1407 · 2π · 11.04× 106

2
√
2

⇒ ωr ≈ 1.552× 106 rad/s

The axial frequency ωz is calculated using:

ωz =

√
2κeU

mz20
=

√
2 · 0.17 · 1.602× 10−19 · 2.0
2.66× 10−26 · (0.0015)2

⇒ ωz ≈ 1.349× 106 rad/s

The corrected transverse secular frequency ωxy becomes:

ωxy =

√
ω2
r −

1

2
ω2
z =

√
(1.552× 106)2 − 1

2
(1.349× 106)2 ⇒ ωxy ≈ 1.224× 106 rad/s

Finally, converting to kHz:

ffinal, corrected =
fxy
2π

=
1.224× 106

2π
⇒ ffinal, corrected ≈ 194.8 kHz

Interestingly, the calculated frequency deviates significantly from the modulation fre-

quency used in the simulations (roughly 387 kHz). In fact, the theoretical value at which

we would expect the greatest dip in scattering signal is nearly precisely half of the utilized

value. Perhaps we are missing a larger trend: looking more broadly at the scattering signal

while sweeping over a larger range of frequencies, we get the result in Figure 5.4.

Although there is indeed a dip in the scattering signal at the theoretical resonant fre-

quency, we in fact see a much larger dip at twice this frequency. This suggests that while the

system exhibits behavior indicating that it iss being modulated near the expected secular

frequency of motion (∼ 195 kHz), the most prominent effect on Be+ fluorescence — and thus

the most visible ”detection” of motion — is occurring at a higher harmonic, specifically at

∼ 390 kHz, nearly twice the calculated ωxy/2π.
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Figure 5.4: Modulation frequency scan for a voltage of 39.5V and endcap voltage of 2.0V.
The dotted red line indicates the frequency used in the static-frequency simulation run (ap-
proximately 387 kHz). While a subtle dip in scattering is observed near the analytically
calculated resonance at ≈ 194.8 kHz, the dominant resonance appears at twice that fre-
quency, suggesting a stronger response at the second harmonic.

One plausible explanation for this behavior is that the modulation field is coupling more

efficiently to a nonlinear response mode of the system — in other words, a second harmonic

of the fundamental secular motion. In nonlinear driven oscillatory systems, it is somewhat

established that energy can be transferred into overtones or subharmonics when the sys-

tem is driven at integer multiples (or fractions) of its base frequency [36]. Although the

pseudopotential approximation treats the ions as harmonic oscillators near equilibrium, the

actual Coulomb crystal is a coupled, many-body system with anharmonic corrections that

may enable strong responses at higher-order harmonics [37]. This would mean the Be+ fluo-
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rescence suppression we observe does not strictly correspond to motion at the fundamental

secular frequency, but rather to one of its harmonics where the overall motional amplitude

or heating is more pronounced.

Another factor to consider is the role of modulation amplitude. At higher modulation

amplitudes — like those used in this calibration run — ions may enter a nonlinear regime

where energy is no longer confined to the primary secular frequency. Instead, resonant

coupling can occur across a broader spectrum, particularly near higher-order multiples where

the effective energy transfer is maximized [36]. It’s also possible that motion at twice the

secular frequency (which may appear more dynamically symmetric) leads to more consistent

disruptions in Be+ cooling, thereby producing a more visible drop in scattering signal. This

could be especially true if Be+–O+ coupling is stronger in that regime, which would translate

the otherwise subtle motion of O+ into a measurable signal with enhanced fidelity. The

structure of this nonlinear behavior aligns with theoretical predictions from solutions to the

Mathieu–Hill equation, which describe the complex, parameter-dependent dynamics of ions

in RF traps [38].

This observed frequency-doubling behavior raises a practical question for experimental

design: should modulation frequency be tuned to the theoretical secular frequency, or instead

to the empirically observed scattering minimum? While a more detailed investigation is

warranted to fully resolve the mechanism,4 we provisionally proceed by tuning to the second

multiple of the calculated secular frequency — the choice that aligns with the dominant dip

observed in Figure 5.4. This assumption is later validated by the overall behavior of the

system across a wide range of parameter configurations.

Given this evidence, we adjust our strategy and rerun simulations using the empirically

observed resonance frequency. We thus obtain the following heatmap shown in Figure 5.5.

This figure reflects a refined sweep at a modulation frequency of approximately 390 kHz,

corresponding to the second harmonic of the corrected radial secular frequency discussed

4This remains an open question and falls outside the primary scope of this thesis, though future work
could investigate it in depth.
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Figure 5.5: Updated heatmap showing scattering behavior. Unlike the previous version, this
plot dynamically computes the modulation frequency for each parameter set, using twice the
theoretical values derived from Chapter 1 — consistent with observed resonance behavior.
Configurations where trap stability breaks down are shown in gray, while those with NaN

values are indicated in pink. The blue color gradient matches that of Figure 5.3. The
modulation amplitude used here is 1.0, to be compared with Figure 5.6.

earlier. The white regions — indicative of low scattering — now appear much more sharply

defined and consistent with what we expect based on our empirical observations. This pro-

vides further support for the idea that our system responds most strongly to modulation near

twice the nominal secular frequency, possibly due to nonlinearities or second-order motional

coupling. The clearest low-scattering “ridge” still occupies a narrow band in the voltage-

endcap voltage space, providing us with a target subspace for high-resolution dissociation

detection.

Having established the importance of resonant frequency, we next explore how the drive

amplitude modulates the response landscape. To further probe the dynamics of this response,

we vary the modulation amplitude across four distinct values, holding all other parameters

fixed. These plots reveal how scattering behavior changes as the drive strength is increased

— particularly how the system transitions from clean, well-defined resonance dips to more

chaotic or smeared-out scattering patterns. The progression is shown below:

These results illustrate a clear transition from coherent to chaotic behavior as drive

strength increases. At low modulation amplitudes, the system’s response is highly selective.

The crystal remains well-ordered, and only configurations tuned precisely to the correct
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(a) Modulation Amplitude = 0.2 (b) Modulation Amplitude = 0.4

(c) Modulation Amplitude = 0.6 (d) Modulation Amplitude = 0.8

Figure 5.6: Scattering heatmaps for a range of modulation amplitudes. As the modula-
tion amplitude increases, the structure of the scattering signal becomes progressively more
fragmented and irregular. At lower amplitudes, the signal exhibits well-defined, coherent
streaks that are easier to interpret and trace across parameter space. In contrast, higher
modulation amplitudes introduce greater variability and noise, making it more difficult to
identify consistent trends or regions of optimal performance. The blue color scale used here
is identical to that used in both prior heatmap figures.

secular resonance yield a drop in scattering, making these regions particularly useful for

calibration. As the amplitude increases, however, the precision of this resonance erodes.

The regions of suppressed scattering widen, flatten, or in some cases begin to show signs of

secondary minima — all of which make interpretation more difficult.

This behavior is expected in driven nonlinear systems, where large modulation ampli-

tudes can push ions into regimes of complex dynamics, including parametric instabilities,

off-resonant excitation, or unwanted heating. While stronger drives can increase signal am-

plitude, they also increase the likelihood of false positives — configurations that appear to

produce signal dips but do so for reasons unrelated to true resonance.

Equipped with this refined picture, we are ready to scale our analysis to higher dissoci-

ation states. Now that we have a concrete mapping of the parameter space associated with

low scattering — at least for the first dissociation step — we can use this as a foundation.

The next challenge is to apply similar analysis to higher-order dissociation steps, where the
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presence of multiple O+ ions introduces more subtlety into the motional dynamics and their

detectability via Be+ fluorescence.

5.2.2 Number Resolution Step

We now shift focus from the first dissociation event to the more complex problem of resolving

multiple ions in the trap. We begin by simulating a total of 84,300 unique parameter con-

figurations, each representing a distinct combination of voltage, endcap voltage, modulation

amplitude, and dissociation level. These results are compiled into a structured dataframe

for downstream analysis. During preprocessing, we exclude all rows containing NaN val-

ues. While future work may investigate the source and structure of these missing entries in

more detail — potentially enabling principled imputation or uncertainty modeling — we opt

here for simple removal. The fraction of missing data is small,5 and its exclusion does not

meaningfully impact the size, balance, or predictive capacity of the dataset.

To enable fair comparison across parameter configurations, we adopt a unified cost metric

rooted in the sharpness and coherence of each trace. We evaluate signal quality using the

same composite cost function defined previously in Section 4.3: a weighted combination of

normalized slope and inverse R2, which captures both the sharpness and coherence of the

dissociation trace. Specifically, the cost is calculated as Cost = 0.8 · Slope norm + 0.2 ·

R-sq norm, where lower values indicate stronger and more consistent signals. This scoring

function provides a standardized basis for comparing configurations across the full simulation

dataset.

This weighting reflects the intuition that signal sharpness is more indicative of physical

detectability than noise correlation alone. Our choice thus balances the sharpness and reli-

ability of the dissociation signal while providing a meaningful scalar target for classification

and optimization tasks throughout the modeling pipeline. The decision to weight the slope

more heavily stems from its greater direct relevance to dissociation detection: a steep slope

5Approximately 8.9% of rows contain missing values. While not negligible, this fraction is unlikely to
bias results significantly, though more rigorous treatment is a worthwhile direction for future work.
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reflects the physical transition we aim to resolve, whereas a high R2 simply ensures that the

trend is not noisy or erratic.

It is important to emphasize that this is a preliminary cost function — simple and

interpretable, but not exhaustive. We will introduce more nuanced formulations in the

Appendix for future work that incorporate uncertainty quantification, multi-stage behavior,

and KNN-based stability scores. These richer cost functions aim to better capture the

complexity of dissociation behavior in the presence of noise and variability. For the current

modeling stage, however, this 80/20 formulation offers a transparent, intuitive starting point

that aligns well with our physical expectations and provides a clear baseline for this study.

Table 5.1 summarizes a sample of high-performing configurations under this cost metric.

Each entry corresponds to a full simulation run, including its control parameters (voltage,

endcap voltage, and modulation amplitude), computed slope, R2 value, and resulting cost

function score. Note that all simulations listed here use a modulation amplitude of 0.4,

indicating an interesting trend and isolating the influence of voltage and endcap parameters.

Table 5.1: Sample configurations and corresponding cost function results for the parameters
with the lowest cost functions across the parameter set. Lower cost indicates better experi-
mental quality.

Voltage (V) Endcap Voltage (V) Mod Amp Slope R2 Cost Function

48.2 3.5 0.4 -506.53 0.880 4.77
55.4 5.0 0.4 -544.90 0.753 4.93
48.0 3.5 0.4 -482.82 0.914 5.58
58.7 5.5 0.4 -486.03 0.862 6.41
59.0 5.5 0.4 -499.44 0.788 7.06
50.1 4.0 0.4 -466.93 0.876 7.32
55.1 5.0 0.4 -488.41 0.794 7.62
52.0 4.5 0.4 -473.91 0.823 7.94
40.4 2.5 0.4 -433.89 0.925 8.39
53.4 4.5 0.4 -478.23 0.771 8.72

Beyond cost alone, we also highlight a more stringent set of traces: those in which the

scattering signal exhibits a strictly decreasing trend across all dissociation steps. That is,

each jump from a particular dissociation level to the following is negative. These parameter
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sets encapsulate the exact behavior we set out to find. In the context of number resolution,

strictly decreasing scattering values signify that each additional O+ ion entering the trap

contributes a clear, measurable change in the system’s response.6 No reversals, no plateaus

— just clean, monotonic decline. This type of behavior is a crucial standard for resolving

individual ion dissociation events, and such configurations are exceedingly rare and represent

the ideal case for number-resolved detection: they demonstrate that the system is operating

in a regime where each incremental ion alters the dynamics in a quantifiable and consistent

way. Table 5.2 highlights the 11 such configurations uncovered through our analysis alongside

the extracted slope and R2 value from a linear fit to each trace.

Table 5.2: Configurations with strictly decreasing scattering traces across all dissociation
steps.

Voltage (V) Endcap (V) Mod Amp Slope Intercept R2

56.6 2.0 0.2 -116.37 8868.47 0.922
51.7 1.0 0.2 -86.29 9134.32 0.928
53.5 1.0 0.2 -71.26 9113.31 0.793
48.2 3.5 0.4 -506.53 6234.83 0.880
57.6 2.0 0.2 -108.93 8828.00 0.952
40.7 1.0 0.2 -119.87 8579.15 0.883
57.2 1.5 0.2 -101.48 9127.82 0.924
56.4 1.0 0.2 -77.78 9237.91 0.939
55.4 2.0 0.2 -107.74 8732.88 0.926
56.5 5.0 0.6 -309.16 4353.56 0.756
40.9 2.5 0.4 -356.28 5958.13 0.935

These results are strong candidates for benchmarking dissociation detection, as they show

not only clean monotonic decline in scattering signal, but also favorable linear fits with steep

slopes and high R2 values. Such traces may be used later to validate the machine learning

model’s classification fidelity, its capacity to interpolate over regions of clearly structured

physical behavior, and its robustness under random perturbation.

Notice in Figure 5.7 that even simulations with strictly decreasing scattering values often

6Strictly decreasing here refers only to the mathematical condition that each successive value is lower
than the one before. While this ensures directional consistency, the magnitude of change may still be small.
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(a) (b)

Figure 5.7: Two strictly decreasing trends extracted from the simulation dataset. (a) high-
lights the parameter set with the steepest (most negative) slope, while (b) highlights the
parameter set with the largest minimum drop across dissociation drops.

exhibit poor resolution at Jump 4 to 5. To better understand how the scattering signal

evolves across the dissociation sequence, we compute the average change in scattering be-

tween successive states across the full dataset. Table 5.3 shows these average “jumps,” which

provide a clear picture of how sharply the signal tends to decay as additional O+ ions are

introduced.

Table 5.3: Average change in scattering signal between consecutive dissociation steps.

Dissociation Step Average Scattering Change

1 → 2 −342.15
2 → 3 −169.88
3 → 4 −78.72
4 → 5 −32.34
5 → 6 −14.73
6 → 7 −14.01
7 → 8 +9.68
8 → 9 −6.22
9 → 10 −23.19

The results show that early dissociation steps, particularly Jumps 1 to 2 through 3 to 4,

tend to have large and consistent signal drops. After Jump 4 to 5, however, the average

decline in scattering diminishes substantially, and by Jump 7 to 8, we even observe a positive

mean change — a counterintuitive result suggesting local non-monotonicity. These trends
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indicate that a simple linear fit may be inadequate for capturing the behavior of the full

dissociation trace. While early regions are steep and regular, later steps exhibit flatter, more

erratic behavior that is increasingly sensitive to stochastic effects or small perturbations in

the system.

To further quantify this behavior, we count how many simulations exhibit drops of at

least 100 units between each pair of dissociation steps. Table 5.4 reports both the raw counts

and percentages, offering a complementary perspective on how frequently large, resolvable

transitions occur.

Table 5.4: Number and percentage of simulations with at least a 100-unit drop between
dissociation steps.

Dissociation Step Count of Decreasing Rows Percentage (%)

1 → 2 4997 67.65%
2 → 3 4017 54.38%
3 → 4 3537 47.88%
4 → 5 3259 44.12%
5 → 6 3054 41.34%
6 → 7 3081 41.71%
7 → 8 2827 38.27%
8 → 9 2933 39.70%
9 → 10 2848 38.55%

Together, these tables reveal a structural transition: the dissociation signal begins with

large, easily resolved drops but gradually flattens out. Later steps show smaller average

declines and less consistent behavior, especially around Jump 7 to 8, where the signal some-

times increases. This suggests that the dissociation process is not uniformly linear — a

pattern likely rooted in physical changes in the crystal structure or ion dynamics as more

O+ ions are added. Although we do not make explicit attempts to fit non-linear models to

this trend, this may be a valuable search in future work. To better visualize how this trend

evolves across the dissociation sequence, we turn to a threshold-based analysis of scattering

drops.

Figure 5.8 further illustrates this trend by showing the percentage of simulations that
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meet several drop thresholds (100, 200, 300, etc.) across the dissociation steps. As the

sequence progresses, the likelihood of observing large, clean drops falls off significantly.

Figure 5.8: Percentage of simulations that show a scattering decrease of at least 100, 200,
300, 500, or 1000 between consecutive dissociation levels. Large, resolvable drops occur most
frequently in the early steps, while later transitions become increasingly ambiguous.

Importantly, this diminishing signal resolution has direct consequences for how we inter-

pret and model later dissociation steps. Namely, the diminishing resolution in later steps

weakens the reliability of dissociation-state classification and suggests the need for more

flexible modeling. Piecewise or nonlinear regression strategies — explored in later sections

— may help capture these transitions more effectively, particularly where standard linear

fits break down. By identifying which steps are most prone to ambiguity, we can tailor both

our physical models and classification strategies to focus predictive power where it matters

most.

To move beyond step-by-step dissociation behavior, it is useful to zoom out and examine

how control parameters shape experimental performance as a whole.
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We now turn our attention to the broader structure of the parameter space and its rela-

tionship to the cost function. To better understand how parameter choices relate to overall

performance, we plot the cost function against applied RF voltage across all simulations. As

shown in Figure 5.9, there is no clean trend or monotonic behavior; instead, low-cost regions

are scattered nonlinearly throughout the voltage range. Promising configurations do not

cluster around any single voltage value, suggesting that good performance arises from more

subtle combinations of control parameters rather than simple tuning of a single variable.

Figure 5.9: Scatter plot showing the distribution of cost function values as a function of
applied RF voltage. While some clustering is apparent, the overall cost landscape is highly
nonlinear, indicating that optimal configurations result from subtle interactions between
multiple parameters rather than simple tuning of voltage alone. The structure of the plot
includes a dense horizontal streak — where the majority of simulations reside — along with
a faint sinusoidal pattern that weaves around it, hinting at periodic structure or coupled
parameter dynamics within the configuration space.

This complex cost landscape reflects interactions between RF voltage, endcap voltage,

and modulation amplitude, and points to the need for multidimensional models that can
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learn these joint dependencies. Decision trees, random forests, and other ensemble methods

are particularly well suited for this task. In fact, the very lack of simple trends or isolated

optimal regions in parameter space provides foundational evidence that justifies our modeling

strategy: machine learning models that can capture nonlinear relationships, adapt to sparse

local patterns, and integrate interacting features are not just helpful, but essential. The

structure of the parameter space itself validates the choice of flexible, data-driven approaches

like those we explore.

Finally, we plot the cost function against endcap voltage in Figure 5.10a. While the

dependence is more scattered than in the case of RF voltage, we still observe clustering of

low-cost configurations around specific voltage ranges. These may correspond to regions of

optimal axial confinement, which affect crystal geometry and motional coupling.

(a) (b)

Figure 5.10: Cost function behavior across two parameters. Left: Endcap voltage exhibits
mild influence on configuration quality. Right: Modulation amplitude shows more pro-
nounced effects, particularly at low amplitudes.

This approach is extended to additional control variables to assess their individual in-

fluence. We perform a similar analysis for modulation amplitude, shown in Figure 5.10b.

Unlike the other parameters, modulation amplitude appears to exert a more complex, non-

linear effect on the cost landscape. Some local minima occur at intermediate values — likely
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reflecting trade-offs between signal strength and crystal stability during modulation.7

These parameter-specific trends highlight the deterministic structure of the cost land-

scape as seen from single-run simulations. However, real experimental systems — and by

extension, high-fidelity simulations like QLICS — exhibit inherent variability that cannot

be captured by one trial alone. To address this, we now turn to a Monte Carlo framework

that systematically quantifies uncertainty across repeated runs of identical configurations.

5.2.3 Monte Carlo Analysis

Up until this point in our results discussion, simulations have been treated as deterministic

— that is, each configuration has been assumed to produce a fixed scattering outcome.

However, as described in Section 2.4, QLICS introduces stochasticity at multiple stages, both

internally and through its coupling with LAMMPS. These sources of randomness include

thermal noise, probabilistic photon scattering, and numerical variation in ion trajectories.

As a result, a single simulation run does not fully characterize a configuration. To capture the

inherent variability, we instead rerun the same configuration file multiple times to generate an

empirical distribution of outcomes. This approach allows us to estimate statistical properties

— such as mean scattering, variance, or confidence intervals — and to build models that are

robust to noise rather than overfitted to a single realization.

This variability provides the foundation for constructing a Monte Carlo model, in which

each configuration is treated as a distribution rather than a single-point estimate. By repeat-

edly sampling from this distribution — through re-running the same configuration multiple

times with injected noise — we can simulate the probabilistic behavior of the system and

propagate uncertainty through the optimization and classification pipelines. This allows us

to evaluate not only the mean performance of a configuration, but also its stability and

7The reader may notice that voltage was sampled more densely than either modulation amplitude or
endcap voltage. This decision emerged for two main reasons: (i) voltage consistently ranked as the most
important feature in early models trained on evenly sampled, standardized data; and (ii) interpolation models
struggled more with voltage than with other parameters, suggesting that voltage-related variations induce
greater local randomness in system behavior. However, future work should direct greater attention to these
other features.
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reliability across repeated runs.

Importantly, we make no assumptions about the shape of the underlying distribution for

each configuration’s output. While some modeling approaches might default to Gaussian

or uniform priors, and QLICS itself introduces approximations for photon scattering and

randomized uniform distributions for initial ion positions, we deliberately avoid imposing

any particular parametric form on the observed scattering data. This decision reflects the

complex, layered nature of the stochasticity present in the system: initial ion positions

are drawn uniformly within a spherical volume, photon counts are sampled as discussed

in Chapter 2, and modulation responses emerge from a mixture of these random elements

under resonance-sensitive dynamics. In this context, assuming a fixed distribution — even a

physically motivated one — risks mischaracterizing the true variability, especially in regimes

where the combined effects are nonlinear or system state–dependent. Instead, we treat

each simulation as a draw from an unknown, potentially nonparametric distribution, and

construct empirical models that capture this behavior directly. By doing so, we preserve the

structure and irregularities of the simulated outcomes and avoid distorting the data to fit a

simplified analytical mold.

Statistic Count Mean Median Std. Dev. Min Max

Scattering Values 120 7775.12 7778.66 159.03 7398.23 8162.45

Table 5.5: Summary statistics for photon scattering values across multiple runs for a unique
parameter set. Random behavior was assessed based on local multiprocessing rather than
utilizing random seeds via HPC batch run.

Specifically, we generate 10,000 bootstrap8 resamples (each of size 120) from the empirical

distribution of scattering values. For each resample, we calculate the proportion of values

that fall within symmetric intervals around the sample mean (e.g., within ±50, ±100, ...,

±400). Averaging across bootstrap samples produces an empirical estimate of how frequently

scattering values fall within these ranges for typical simulations, while the variation across

8A bootstrap resample is created by randomly drawing (with replacement) from the original sample of
120 scattering values, preserving sample size while allowing duplicates.
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Figure 5.11: Histogram showing the distribution of scattering values for a single dissociation
(one atomic oxygen in the trap), with bin size 20. Note that this distribution results from
complex interactions between underlying distributions. We assume throughout this thesis
that random behavior, particularly in the spread around the mean at a specific scattering
value, is independent of specific parameters. Random sampling and probabilistic estimates
confirm the basis for this assumption.

Range Mean Proportion Standard Deviation
±50 0.2372 0.0411
±100 0.4717 0.0482
±150 0.6641 0.0441
±200 0.7787 0.0419
±250 0.8881 0.0394
±300 0.9363 0.0211
±350 0.9681 0.0173
±400 0.9984 0.0045

Table 5.6: Bootstrapped proximity proportions: average probability that a value falls within
a given range of the sample mean across 10,000 bootstraps.

bootstraps provided a measure of uncertainty in those estimates.

These proximity probabilities describe how tightly values tend to cluster around their
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sample mean in repeated simulation contexts and can be used to inform expectations about

how a given scattering value might vary across repeated trials. For example, if our analysis

shows that 90% of values in typical simulations fall within ±250 of their respective means,

then we can say the following: if a given scattering value x is generated from a similar

simulation setup, and if the underlying distribution behaves comparably to those observed,9

then there is approximately a 90% chance that a second simulation under identical conditions

would yield a result within [x− 250, x+ 250].

It is important to note that this does not imply a 90% confidence interval for the mean

centered on x; such an inference would require additional assumptions about symmetry or

parametric form. Instead, our interpretation is predictive in nature: the proximity intervals

reflect empirical uncertainty due to simulation randomness, not epistemic uncertainty about

a population parameter. In this way, these intervals provide a principled basis for construct-

ing Monte Carlo-derived error bars around individual scattering outcomes, grounded in the

empirical behavior of the simulation system itself.

To rigorously apply this framework, we now build a Monte Carlo model that leverages the

empirically derived proximity intervals to simulate variability in dissociation traces. Rather

than assuming a predefined distributional form, we use the bootstrapped proximity proba-

bilities from Table 5.6 to construct nonparametric uncertainty bands around each scattering

value. Specifically, we interpret each proximity band — such as ±250 or ±300 — as a cumu-

lative probability threshold and sample uniformly within the region bounded by two adjacent

bands. For instance, if the probability of a scattering value falling within ±300 of the mean

is 93.63% and the probability within ±250 is 88.81%, then we estimate that approximately

4.82% of outcomes lie in the range between 250 and 300. A random draw falling into this

band would then be uniformly sampled within the interval [x−300, x−250]∪[x+250, x+300],

9This is a significant assumption; while random sampling supports its validity in practice, a dedicated
study would be needed to fully verify this behavior.
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where x is the original scattering value.10

We repeat this process independently for each dissociation level in a trace. Each value

is perturbed according to its corresponding empirical uncertainty profile, thereby generat-

ing synthetic scattering traces that reflect the stochastic behavior of the physical system

without assuming Gaussianity or symmetry. This method treats the bootstrapped proxim-

ity proportions as a lookup table for uncertainty modeling: the in-between regions serve

as quantized bands with uniform sampling applied to approximate local variability. When

repeated across many trials, this Monte Carlo procedure produces an ensemble of plausible

dissociation traces, capturing both the central tendencies and the long-tail behavior of exper-

imental outcomes. These synthetic traces can then be passed through the same cost function

and classification pipelines described previously, enabling robust downstream inference that

is sensitive to realistic uncertainty in the input data.

Suppose we want to evaluate the probability that out strictly decreasing parameter sets

stay strictly decreasing. Now equipped with this Monte Carlo approach, such analysis is

simple. Monte Carlo analysis11 reveals that the 11 rows exhibiting strictly decreasing be-

havior under ideal conditions are exceptionally sensitive to noise. When subjected to 1000

randomized perturbation trials, each designed to reflect empirically observed variability in

the scattering signal, the probability that these configurations retain their strictly decreasing

profile is strikingly low. In nearly all cases, the estimated probability of maintaining this

structure is below 1%, with most falling near or exactly at 0%. The highest observed prob-

ability is only 8.1%, underscoring the fragility of this behavior under noise injection. Given

that strict monotonicity requires all ten successive values to decrease under random fluctua-

tion, these results emphasize how unlikely it is for such patterns to persist without significant

10Uniform sampling within each band is justified because the bootstrap-derived probabilities specify only
the proportion of values falling between adjacent proximity intervals—not their distribution within. In the
absence of further structure, a uniform assumption ensures that we do not introduce artificial skew or density
that isn’t empirically supported.

11Each strictly decreasing configuration was perturbed 1000 times using noise sampled from empirically de-
rived proximity bands. After each trial, we checked whether the perturbed trace remained strictly decreasing
across all dissociation steps. The final probability reflects the fraction of trials in which strict monotonicity
was preserved.
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stabilization. This suggests that apparent strict monotonicity may often reflect numerical

coincidence or transient behavior, rather than robust or reproducible system dynamics.

The Monte Carlo framework provides a principled method for quantifying variability in

dissociation traces. By running repeated stochastic perturbations on each configuration, we

can compute predictive uncertainty intervals — such as the 5th to 95th percentile — that

reflect the expected spread of the signal due to inherent system randomness. These intervals

offer a more realistic view of each configuration’s stability, helping to distinguish between

parameter sets that are merely sharp on average versus those that consistently exhibit steep,

monotonic behavior.

Beyond global uncertainty estimates, the model enables targeted probabilistic queries.

For instance, we can evaluate the likelihood that a critical jump (e.g., from step 5 to 6)

exceeds a threshold magnitude. High probabilities suggest reliable state resolution, while

low or inconsistent values signal fragility or susceptibility to failure — valuable insights

when selecting robust configurations for downstream use.

In addition to evaluation, the Monte Carlo approach may also be utilized to expand

the training dataset. By generating multiple noisy versions of each configuration, we create

examples that reflect the kinds of variation that might occur in real experiments. This helps

prevent overfitting and improves generalization, especially when measurements are affected

by noise. In this way, the Monte Carlo model contributes to both robustness analysis and the

development of models that perform reliably under realistic conditions. Beyond improving

model generalization, the Monte Carlo approach offers additional insight into the expected

variability of dissociation outcomes. By characterizing this variation explicitly, we can begin

to define what constitutes a ”realistic” performance band for any given configuration — and,

in turn, make more informed optimization decisions. The next section formalizes this idea

by framing our evaluation in terms of a mixed strategy equilibrium, where robustness and

variability are considered jointly.
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5.2.4 A Mixed Strategy Equilibrium

As demonstrated by our Monte Carlo model and corroborated by repeated stochastic simula-

tions, fluctuations of up to ±250 photon counts across dissociation levels are entirely within

reason. These variations arise not from noise or numerical instability, but from real, inher-

ent randomness encoded in the simulation architecture. In fact, the synthetic randomness

introduced at the beginning of each simulated run likely results in more pronounced vari-

ability than what might occur in a physical lab setup. In our framework, each trial begins

by placing a fixed number of molecular oxygen ions randomly within the trap — a process

that effectively reshuffles the entire configuration from scratch. By contrast, in an actual

experiment, molecular oxygen is stochastically loaded once, and its subsequent dissociation

proceeds without further explicit spatial redistribution. This distinction leads to greater

stochastic dispersion in the simulation and underscores that our error bars represent a kind

of upper bound — a conservative estimate of how significantly dissociation signals might

vary under uncontrolled conditions.

Despite our efforts to identify a single experimental configuration that yields clean, reli-

able scattering behavior across all dissociation transitions, the data suggests a fundamental

limitation: there is no single state in parameter space that robustly supports steep scattering

drops across both early and late dissociation jumps. To be clear, we did succeed in iden-

tifying configurations that show strictly decreasing scattering behavior and exhibit high R2

values — an indication of solid number resolution performance, yet even these configurations

break down under random noise injection. Essentially, while the trend is monotonic and fits

well, the absolute change in signal is sometimes too narrow to offer reliable resolution in the

presence of noise, particularly on narrow jumps (such as four dissociation to five, etc).

What we now seek is a stronger criterion: parameter sets in which scattering jumps ex-

ceed a threshold of at least 400. This cutoff provides a form of robustness — a buffer against

the natural stochasticity observed in simulation and experiment alike. Even in worst-case

scenarios where stochastic fluctuations push a jump slightly downward, configurations with

86



large signal deltas are far more likely to preserve correct number discrimination. Although it

is impossible to eliminate uncertainty entirely, this threshold serves as a practical safeguard,

ensuring that even in the presence of variability, the dissociation events remain distinguish-

able.

To make this concrete, we examine the dissociation transitions in two separate regimes.

First, we search for configurations that exhibit consistently large scattering decreases across

early dissociation steps — from the first ion dissociating through the sixth (i.e., Jump 1 to 2

through Jump 5 to 6). Even under a strict criterion of ≤ −400 drop at each step, we identify

two viable configurations, listed below:

Table 5.7: Configurations with ≤ −400 drop across Jumps 1 to 6.

Voltage (V) Endcap Voltage (V) Modulation Amplitude Slope

51.9 4.5 0.4 -440.90
49.7 4.0 0.4 -362.99

In contrast, when analyzing the late dissociation steps — Jump 6 to 7 through Jump 9 to 10

— and applying the same ≤ −400 threshold, only a single configuration meets the criterion:

Table 5.8: Configuration with ≤ −400 drop across Jumps 6 to 10.

Voltage (V) Endcap Voltage (V) Modulation Amplitude Slope

54.8 3.0 0.6 -137.03

Crucially, there is no overlap between the two sets — the configuration that performs

well for late-stage dissociation does not appear in the set that performs well for early-

stage behavior, and vice versa. This separation of optimal behaviors across the two regimes

indicates an inherent incompatibility — a tension — in tuning a single set of trap and

modulation parameters to perform well across the full dissociation range.

This observation motivates a more nuanced solution strategy: rather than attempting

to force a one-size-fits-all configuration, we propose a mixed strategy equilibrium, inspired

by game-theoretic reasoning. In game theory, a mixed strategy involves randomizing over
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multiple pure strategies to optimize expected performance. Similarly, in our context, the

optimal approach may be to run two distinct experiments in parallel or in rapid succession:

one tuned to maximize resolution in the early dissociation regime (steps 1–6), and another

optimized for the later transitions (steps 6–10).

The logic is straightforward. Because early dissociation steps are crucial for determining

whether dissociation is occurring at all — and because their signal drops are typically the

strongest — the first configuration emphasizes maximizing the initial slope. This may involve

lower modulation amplitudes and slightly adjusted voltage levels to stabilize the crystal’s core

structure. The second configuration, meanwhile, can be more aggressive — amplifying the

modulation to provoke the final ions into dissociation, even if the signal becomes noisier or

the slope shallower. If both configurations are run nearly simultaneously or on alternating

cycles,12 the combined dataset provides high-resolution detection across the full 10-level

range, leveraging each configuration where it performs best.

We also analyze the likelihood that selected configurations maintain strictly decreas-

ing scattering behavior under stochastic perturbations. Using our Monte Carlo model with

proximity-weighted noise sampling, we simulate each configuration 1,000 times and evaluate

whether key subsets of the trace remain strictly decreasing. The first two configurations

below are assessed for decreasing behavior from steps 1 through 6, while the third is as-

sessed from steps 6 through 10. All three rows exhibit remarkably high robustness, with

probabilities exceeding 94%, suggesting that their strictly decreasing structure is not only

present in the original measurement but also highly resilient to simulated noise. This level

of consistency distinguishes them from the 11 configurations previously analyzed, where the

probability of preserving this structure was nearly zero.

This hybrid protocol does not constitute a workaround — it reflects a deeper structural

insight about the system: that parameter regimes favoring early stability are not the same

as those that encourage late-stage dissociation. Attempting to force both goals into a single

12Likely, sequentially to allow for as stable, consistent conditions as possible.
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Table 5.9: Strictly Decreasing Behavior Under Monte Carlo Perturbations

Steps 1–6

Voltage Endcap Voltage ModAmp Prob. Stays Strictly Decreasing

51.9 4.5 0.4 0.990
49.7 4.0 0.4 0.949

Steps 6–10

Voltage Endcap Voltage ModAmp Prob. Stays Strictly Decreasing

54.8 3.0 0.6 0.957

configuration imposes incompatible constraints. By embracing a mixed strategy, we align our

experimental design with the underlying dynamics of the system, maximizing performance

not through uniformity, but through carefully chosen specialization.

This hybrid strategy, grounded in simulation-derived insight, provides a nuanced frame-

work for defining what success looks like in this system. The natural next step is to ask

whether our machine learning model can internalize that framework — distinguishing reli-

ably between promising and poor configurations. To assess this, we begin by evaluating the

model’s classification performance.

5.3 Machine Learning Model Evaluation

We begin this section by defining a few essential terms and metrics that are used to interpret

the performance of classification models throughout the chapter. With these concepts in

place, we proceed to evaluate three distinct approaches: a bagged ensemble model using

random forests, a boosted ensemble model via gradient boosting, and finally, a local KNN-

based interpolation scheme that provides a neighborhood-informed measure of configuration

quality. Each method offers a different perspective on the classification task, and together

they form a comprehensive framework for assessing both accuracy and stability in model
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predictions.

In binary classification, predictions can be categorized as true positives (TP), false pos-

itives (FP), true negatives (TN), or false negatives (FN) [20]. A true positive occurs when

the model correctly predicts the positive class, while a true negative corresponds to correctly

predicting the negative class [19]. A false positive is when the model incorrectly predicts

the positive class for a negative instance, and a false negative is when it incorrectly predicts

the negative class for a positive instance [19]. These four quantities form the entries of the

confusion matrix, which summarizes classification performance [22].

Figure 5.12: A simple confusion matrix showing the placement of true positives, false posi-
tives, etc. No need to be confused as the name suggests!

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, (5.2)

The confusion matrix provides a concise summary of how well our binary classifier per-

forms against the ground truth. Precision tells us how many of the predicted positives were

actually correct, reflecting the model’s ability to avoid false positives [19]. Recall, on the

other hand, measures how many of the true positive instances were successfully identified,

indicating how well the model captures actual positives [19]. A high precision means fewer

false alarms, while high recall means fewer missed detections. Accuracy, by contrast, simply
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refers to the total proportion of correct predictions — both positives and negatives — out

of all predictions made.

F1 Score =
2 · Precision · Recall
Precision + Recall

(5.3)

The F1 score balances both precision and recall, offering a harmonic mean that penalizes

extreme trade-offs [19].

Macro F1 =
1

C

C∑
i=1

F1i (5.4)

Macro F1 averages F1 scores across both classes equally,13 which is particularly useful

in the presence of class imbalance. This metric allows us to evaluate how well the model

balances precision and recall across both classes, regardless of imbalance. With this in mind,

we now examine the performance of our first model: a bagged ensemble of decision trees

trained to classify configurations based on key physical parameters.

5.3.1 Bagging

We begin by evaluating a Random Forest classifier trained to distinguish between “good”

and “bad” configurations using three physical input features, with classification determined

based on a threshold of the 20th percentile of the cost function defined in Section 5.2.2.

The data is split into training and testing sets, and labels are encoded such that “good”

corresponds to 1 and “bad” to 0. After training, we compute the relative importance of each

feature, measured by how often and effectively it is used in the ensemble’s decision trees.

To assess performance, we first train a baseline random forest model using default hy-

perparameters.14 The dataset was split into 80% training and 20% testing subsets, and class

labels were encoded such that good = 1 and bad = 0.

13In binary classification, this refers to computing the F1 score separately for class 0 and class 1, and then
averaging the two.

14Default parameters in RandomForestClassifier include criterion=’gini’, max depth=None,
min samples split=2, min samples leaf=1, max features=’sqrt’, and bootstrap=True.
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Table 5.10: Feature importance scores from the baseline Random Forest classifier.

Feature Importance (%)

Voltage 64.43
Endcap Voltage 23.29
Modulation Amplitude 12.27

Initial evaluation shows that the trained model achieves a test accuracy of 83.15%, with

stronger performance on the majority class (bad) and lower recall for the minority class

(good). Precision and recall imbalances are reflected in the macro-averaged F1 score of 0.74,

indicating that while the classifier performs well overall, it initially struggles to consistently

identify the minority class. This difficulty is reflected in the minority class’s precision (0.61)

and recall (0.55), both of which are less than ideal. This suggests that high-quality configura-

tions are harder to distinguish under the current feature set and class imbalance, motivating

the need for targeted reweighting and hyperparameter tuning to improve recall.

Table 5.11: Classification report for the initial random forest classifier on the test set.

Class Precision Recall F1 Score Support

bad 0.88 0.91 0.89 1165
good 0.61 0.55 0.58 313

accuracy 0.83 1478
macro avg 0.75 0.73 0.74 1478
weighted avg 0.83 0.83 0.83 1478

To improve upon this baseline, we next apply hyperparameter optimization using two

standard techniques: grid search and randomized search.15 Both methods use 5-fold cross-

validation16 and macro F1 as the evaluation metric.

The grid search explored 96 parameter combinations across a defined search space and

identified the best-performing model with the following hyperparameters: n estimators =

15Grid search exhaustively evaluates all combinations of specified hyperparameters, while randomized
search samples a fixed number of combinations randomly, offering faster results when the hyperparameter
space is large.

16In 5-fold cross-validation, the dataset is split into 5 parts; the model is trained on 4 parts and validated
on the remaining one, rotating this process across all 5 folds to ensure robust performance estimates.
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Figure 5.13: Confusion matrix showing performance on the testing set for the initial bagging
(Random Forest) model.

300, max depth = 10, min samples split = 5, min samples leaf = 2, max features =

"sqrt", and class weight = "balanced". This model achieved a macro F1 score of 0.8158.

To further probe the hyperparameter space, we then apply randomized search over 400

sampled configurations. The best model from this approach slightly outperformed the grid

search, achieving a macro F1 score of 0.8175. The optimal parameters were: n estimators

= 405, max depth = 10, min samples split = 3, min samples leaf = 3, max features =

"log2", and class weight = "balanced subsample".

This final tuned model significantly improved minority class recall and achieved an over-

all test accuracy of 87%, reflecting stronger generalization across both classes as shown in

Table 5.12.

In addition to overall tuning, we perform targeted hyperparameter searches to prioritize

classification performance on individual classes. When optimizing for class 1 (the minority

class), the best configuration achieved an F1 score of 0.7122, demonstrating modest im-

provement through class reweighting and depth control. In contrast, the classifier performs

extremely well on class 0, achieving an F1 score of 0.9293 even without special treatment —
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Table 5.12: Classification report for the best random forest model after hyperparameter
tuning.

Class Precision Recall F1 Score Support

0 (bad) 0.93 0.90 0.92 1165
1 (good) 0.67 0.77 0.72 313

accuracy 0.87 1478
macro avg 0.80 0.83 0.82 1478
weighted avg 0.88 0.87 0.87 1478

likely due to its larger sample size and greater separation in feature space.

Finally, we evaluate model discrimination using the AUC-ROC metric. The ROC (Re-

ceiver Operating Characteristic) curve plots the true positive rate (TPR) against the false

positive rate (FPR) across various classification thresholds, revealing the model’s ability to

rank examples correctly [19, 20]. The AUC (Area Under the Curve) quantifies this: a score

of 1.0 indicates perfect separation, while 0.5 suggests random guessing [20]. Our tuned ran-

dom forest model achieves an AUC of 0.912 — indicating excellent classification performance

across thresholds.

Figure 5.14: ROC-AUC curve for the tuned Random Forest model (with optimal set of
hyperparameters), showing a strong area under the curve (AUC = 0.912). This indicates
excellent classification performance and consistent ranking ability across decision thresholds.

This high AUC reflects not just strong point predictions, but consistent ranking perfor-
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mance across decision thresholds — a key metric in imbalanced classification problems like

ours.

To summarize, this final tuned model significantly improved minority class recall and

achieved an overall test accuracy of 87%, reflecting stronger generalization across both

classes. This result is corroborated by the ROC-AUC score of 0.912, which signals excellent

discriminative capability [19]. Note that AUC is a threshold-independent metric that mea-

sures the probability the classifier ranks a randomly chosen positive example higher than a

negative one [19]. An AUC above 0.90 indicates that the classifier can effectively distinguish

between classes even when the decision boundary is varied, making this result especially

meaningful in imbalanced settings where accuracy alone can be misleading [19].

That said, performance remains asymmetric. The majority class (bad) exhibits high

precision (0.93), high recall (0.90), and a strong F1 score (0.92), reflecting both abundant

support (1165 examples) and high separability in feature space. In contrast, the minority

class (good) shows improvement but still lags, with a precision of 0.67 and recall of 0.77.

Several factors may account for this discrepancy. First, the training set is imbalanced due

to the use of a 20th-percentile cost threshold to define “good” outcomes — resulting in

class 1 comprising just 20% of the total data [19]. Second, it is possible that the feature

distributions for “good” configurations overlap significantly with “bad” ones in certain re-

gions, reducing the model’s confidence and increasing false positives. Third, although class

weighting and hyperparameter tuning improved recall, further techniques such as synthetic

resampling or cost-sensitive learning may be necessary to isolate borderline class 1 regions

more effectively [19].

Having established a strong baseline using bagging, we now turn to a second ensemble

method: boosting.
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5.3.2 Boosting

We follow the same procedure as before, but substitute in a boosting-based model — specif-

ically, XGBoost — to directly compare performance across ensemble strategies. Recall that

like random forests, XGBoost is an ensemble of decision trees, but it differs in how those

trees are constructed and combined.

To begin, we train an XGBoost classifier and extract gain-based feature importances.

Here, Endcap Voltage emerges as the most informative feature, followed by Modulation Am-

plitude and Voltage. These results are summarized in Table 5.13.

Table 5.13: Feature importance scores from the trained XGBoost classifier.

Feature Importance (%)

Endcap Voltage 44.57
Modulation Amplitude 31.96
Voltage 23.47

Compared to the feature importances from random forests, this ranking shows a subtle shift

in emphasis. This divergence stems from structural differences in how each model learns

from data.

Random forests train many independent trees on different subsets of the data and average

their outputs. They tend to assign high importance to features that are useful globally —

i.e., those that consistently perform well as early splits [19, 20, 22]. In contrast, XGBoost

constructs trees sequentially, where each new tree corrects the mistakes of its predecessors.

This process prioritizes features that reduce residual errors at specific stages, even if those

features aren’t universally predictive [24]. As a result, XGBoost tends to emphasize locally

informative features and is often more sensitive to subtle feature interactions [19, 24].

We now assess the model’s classification performance on the test set. XGBoost achieves

an overall accuracy of 87.28%, with particularly strong performance on the majority class.

It achieves 0.90 precision and 0.95 recall for the bad class, and a lower recall of 0.60 for the

good class. These results yield a macro F1 score of 0.79 — comparable to the tuned random
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forest and reflective of strong generalization despite the class imbalance.

Table 5.14: Classification report for the XGBoost model on the test set.

Class Precision Recall F1 Score Support

bad 0.90 0.95 0.92 1165
good 0.75 0.60 0.67 313

accuracy 0.87 1478
macro avg 0.82 0.77 0.79 1478
weighted avg 0.87 0.87 0.87 1478

Figure 5.15: Confusion matrix showing performance on the testing set for the initial boosting
(XGBoost) model.

To refine performance further, we next explore hyperparameter tuning. As with the

bagging model, we apply randomized hyperparameter search to three objectives: class 0 F1,

class 1 F1, and macro-averaged F1. Each search samples 300 configurations using 5-fold

stratified cross-validation. For class 1 tuning, the best model achieved an F1 score of 0.6862

using 649 estimators, a max depth of 4, a learning rate of 0.046, and a positive class weighting

of 2. The class 0–optimized model achieved a notably higher F1 score of 0.9262 with deeper

trees and no class weighting. Macro F1 optimization produced a balanced model scoring

0.8049 with parameters closely aligned with the class 1 case. These results reinforce earlier
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findings: class 0 is easier to classify, while improving class 1 recall requires careful tuning.

Finally, to benchmark XGBoost against related algorithms, we compare three popular

boosting methods: XGBoost, AdaBoost, and Gradient Boosting. All were tuned to maximize

macro F1. XGBoost and Gradient Boosting perform comparably well, achieving scores of

0.8002 and 0.8033 respectively. However, AdaBoost falls short with a macro F1 of 0.4645.

This underperformance stems from AdaBoost’s reliance on shallow learners17 and its lack

of regularization. Without deeper trees or robust error correction, AdaBoost struggles to

capture the nonlinear structure of the dissociation problem. This highlights the importance

of using expressive models with well-tuned capacity when modeling structured experimental

systems.

Figure 5.16: ROC-AUC curve for the tuned XGBoost model (with optimal set of hyperpa-
rameters), showing a strong area under the curve (AUC = 0.904). This indicates excellent
classification performance and consistent ranking ability across decision thresholds, despite
being marginally lower than the bagging curve’s AUC.

Taken together, these results demonstrate the strengths and limitations of boosting-

based methods, with XGBoost and Gradient Boosting offering strong predictive performance

and AdaBoost highlighting the risks of underfitting in complex systems. Overall, both

Random Forest and XGBoost achieved comparable predictive performance across metrics

17A shallow learner is a weak model with limited capacity, such as a decision stump — a one-level tree
that makes decisions based on a single feature.
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such as accuracy, F1 score, and AUC, suggesting that either model is well suited for this

task. The most notable divergence between them lies in their feature importance profiles:

Random Forest consistently emphasized RF voltage, while XGBoost gave greater relative

weight to endcap voltage and modulation amplitude. This distinction implies that the models

capture different structural aspects of the parameter space, and thus offer interchangeable

yet complementary perspectives on the classification problem.

Having established the classification performance of these ensemble models, we now shift

focus to a complementary approach — one that provides local, interpretable insight into

parameter space structure and classification resilience.

5.3.3 Interpolation and KNN Manifold

It is important to emphasize that the interpolation manifold system is still an experimental

tool for evaluating local classification stability. As such, the current results should be viewed

as preliminary and open to further refinement. Nonetheless, to gain a baseline understanding

of its behavior, we compare its performance against a standard K-Nearest Neighbors (KNN)

model using 15 neighbors. Specifically, we visualize the distribution of good-to-bad scores

produced by each method using side-by-side boxplots. This comparison helps highlight the

respective tendencies of each algorithm when estimating local robustness in the parameter

space.

Figure 5.17 reveals key differences between the 15-NN and interpolated neighbor scoring

methods. While both exhibit low medians near zero, the 15-NN approach has a much

wider spread, with several scores extending to high values. This suggests that 15-NN can

occasionally overestimate local robustness due to isolated “good” points in sparse regions.

In contrast, the interpolated scores are more tightly clustered, with a lower upper bound

and reduced variance. This reflects the method’s smoother, geometry-aware evaluation of

local structure, which avoids overreacting to noisy neighbors. Overall, the interpolated score

appears to offer a more stable and cautious estimate of neighborhood quality, especially in
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Figure 5.17: Boxplot comparing the distributions of good-to-bad scores from the interpolated
manifold model and a traditional 15-nearest neighbors model across 500 randomly selected
points. Outliers are hidden for clarity.

uncertain or boundary regions.

The interpolation-based neighbor scoring framework provides several principled advan-

tages over standard K-nearest neighbors (KNN) when estimating the local robustness of a

configuration. First, unlike KNN, which treats all neighbors equally, interpolation assigns

influence based on spatial continuity, allowing it to capture fine-grained changes in local ge-

ometry and system behavior. Second, by constructing concentric hyperspherical shells and

sampling synthetic points, the method probes not just along observed datapoints but also

within unmeasured regions of the parameter space — offering a richer, more continuous un-

derstanding of local dynamics. Third, RBF interpolation introduces smoothness by design,

reducing the sensitivity to sampling density and outliers that KNN is prone to. Fourth, the

framework blends real observations and interpolated estimates, preserving empirical ground-

ing while filling in gaps in the data manifold — a key benefit in high-dimensional or sparse
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datasets. Finally, this approach quantifies not just how similar a configuration is to known

”good” ones, but how stable its classification remains under small, local perturbations — a

form of robustness KNN alone cannot assess. Together, these properties make interpolation-

based scoring a more flexible, informative, and physically interpretable tool for configuration

evaluation in noisy, complex experimental systems.

Taken as a whole, these findings underscore the value of combining global classification

with localized interpolation-based scoring to form a more nuanced picture of configuration

quality. The methods introduced here are not only effective in identifying high-performing

regions of parameter space, but also in flagging fragile or borderline configurations that

warrant further scrutiny. With this foundation in place, we now turn to potential extensions

— outlining next steps for scaling, refining, and applying the broad framework we have laid

out to future experiment and exploration.

101



Chapter 6

Future Work and Next Steps

While the machine learning framework developed in this thesis already yields promising in-

sights and optimization strategies, there remain numerous opportunities to expand its scope

and deepen its impact. This chapter outlines several concrete directions for future work, each

of which builds on the foundations laid here while pointing toward a more comprehensive,

physically grounded, and experimentally integrated modeling framework.

6.1 Expansion of Feature Set in Training Data

The most immediate next step is to broaden the set of input features used in model training.

Although practical constraints such as simulation time and data dimensionality will always be

relevant, all methods deployed here — ensemble classifiers, Monte Carlo sampling, and inter-

polative scoring — are designed to scale effectively in high-dimensional feature spaces [19].

By incorporating additional features, such as detector tuning, experimental sequence, or

modulation waveform metadata, the model may capture subtle patterns that bolster the

current model. The long-term goal is to boost predictive performance across stricter opti-

mization regimes — ideally improving precision and recall for “good” classifications, even

under stringent1 evaluation criteria.

1By stringent here, we mean cost functions that are extremely selective, such as a 5th percentile cutoff.
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6.2 Cost Function Design

Another rich area for exploration lies in the design of alternative cost functions. The slope–R2

composite metric introduced in this work provides a solid baseline, but it represents only one

lens through which dissociation quality can be measured. Future efforts could use symbolic

regression or genetic programming to search for mathematical structures that more directly

reflect high-resolution dissociation behavior [20]. One promising avenue involves defining

trace-based heuristics — such as total drop magnitude, count of monotonic segments, or

temporal entropy — and constructing nonlinear functions of these quantities. Alternatively,

adaptive thresholds and stage-specific penalties may allow the model to flexibly tune its ob-

jective across different dissociation regimes. Several such cost function variants are outlined

in Appendix A.

6.3 Interpolation Manifold

The interpolation-based scoring system introduced in this thesis offers a compelling new

way to assess local robustness, but there is substantial room to develop this further. One

direction involves refining how synthetic neighbors are sampled — for example, by biasing

toward high-density regions or adapting sphere radii to local curvature. Another possibility

is to incorporate kernel-based smoothing or uncertainty-aware interpolation methods [24],

which would allow the scoring function to explicitly reflect confidence in under-sampled

regions. Dimensionality reduction techniques such as t-SNE or UMAP may also prove useful

here, offering a means to visualize the global structure of the parameter space and highlight

transitions between stable and unstable zones [27, 28]. Ultimately, the goal is to improve

both interpretability and reliability in edge-case classifications. Beyond structural analysis,

it is also important to examine the assumptions that underpin the model’s treatment of noise

and uncertainty.
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6.4 Empirical Verification of Uniform Stochasticity

One assumption underlying our modeling framework is that stochastic variation in photon

scattering is stationary across various parameter sets and is reasonably approximated by

repeated sampling of the same configuration. However, this assumption remains largely

empirical. Future experimental campaigns should focus on collecting detailed dissociation

traces — ideally across a wide range of experimental conditions — in order to construct

formal distributions for count noise. These distributions could be modeled parametrically

(e.g., as Poisson or Gaussian mixtures) or non-parametrically (e.g., via kernel density estima-

tion), and used to better inform simulation fidelity and Monte Carlo variability. Validating

these stochastic assumptions is essential for the trustworthiness of the model’s uncertainty

estimates.

6.5 Closing Thoughts

Finally, and perhaps most critically, this framework should be applied to live experiments

in the lab. The classification and optimization strategies developed here were specifically

designed to interface seamlessly with real-world experimentation, and deployment on phys-

ical systems is the clearest test of their value. It’s important to stress, however, that any

mismatch between simulated and experimental results is not a failure — it’s information.

This model was built to learn. Disagreement provides the examples needed for refinement,

and as the learner absorbs more data from the physical system, its predictions will only

improve. This is the strength of a data-driven machine learning framework: it is not rigid,

but adaptive and self-correcting.

Moreover, in practice, integrating all of this into an interactive dashboard should be

straightforward given the current codebase. Automated job scheduling with sbatch array

scripts would allow new simulation points to be continuously generated and folded into the

dataset, enabling the model to update and improve on a daily basis.
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This thesis has introduced a machine learning-guided framework for analyzing and opti-

mizing number resolution in trapped ion systems, supported by simulation-derived data and

statistically grounded scoring metrics. While the models developed here are designed around

the specific challenges of dissociation detection, the broader methodology — combining sim-

ulation, probabilistic reasoning, and adaptive classification — is widely applicable to other

experimental contexts where noisy signals and complex parameter spaces pose obstacles to

interpretability and control. Our hope is that this work offers not only immediate utility for

tuning dissociation behavior in precision ion experiments, particularly in Be+–O+ trapping

platforms like those used in our lab, but also a generalizable blueprint for applying machine

learning to experimental systems in ion trapping and physics simulations more broadly. Of

course, many aspects of the framework remain open for refinement. But the foundation laid

here — in both code and concept — marks a meaningful step toward more autonomous,

data-driven experimentation in precision ion trapping platforms. In this sense, the thesis is

not only a conclusion — it is an invitation to iterate, expand, and deploy.
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Appendix A

Alternative Cost Functions

This appendix presents a set of alternative cost functions designed to evaluate dissociation

trace quality in different ways. These cost functions incorporate not only the slope and

R2 values from the trace, but also probabilistic classification confidence p, neighborhood

stability scores s, and structural features of the scattering signal such as monotonicity and

variance.

Simple and Moderately Nonlinear Cost Functions

Cost Function 1: Weighted Additive (Baseline Style)

Cost1 = 0.7 · Slope norm+ 0.2 · R-sq norm+ 0.1 · (1− p) · 100 (A.1)

Justification: This function extends the original baseline by including classification con-

fidence. It keeps the form additive and interpretable, with soft penalties for low-confidence

predictions.

Cost Function 2: Nonlinear Stability Wrapping

Cost2 =
0.8 · Slope norm+ 0.2 · R-sq norm

1 + 2s2
(A.2)
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Justification: Strongly penalizes unstable regions of parameter space via a squared

stability score. The cost drops sharply in well-behaved, high-stability regions.

Cost Function 3: Exponential Penalty for Weak Drops

Cost3 =

(
1

n

n−1∑
i=1

e−∆i/100

)
· 100 (A.3)

where ∆i = Scatteringi − Scatteringi+1

Justification: Penalizes small changes in scattering. Larger drops contribute exponen-

tially less to the cost, rewarding clear dissociation transitions.

Cost Function 4: Hybrid Rank-Based Penalty

Cost4 =

(
Slope norm1.3 + R-sq norm1.3

2
· (1− s)2 · (1− p)

)0.5

(A.4)

Justification: Strongly punishes configurations with poor slope or R2, particularly when

classification and neighborhood stability are also low. Useful in noisy datasets.

Cost Function 5: Monotonicity-Aware Model

Let M ∈ [0, 1] be the fraction of strictly decreasing transitions in the scattering trace.

Cost5 = (0.6 · Slope norm+ 0.4 · R-sq norm) ·
(
1 + e−10(M−0.6)

)
(A.5)

Justification: Introduces a sigmoid-style penalty that harshly punishes traces with low

monotonicity. Rewards sharply decreasing traces with minimal reversals.
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Complex Cost Functions

Cost Function 6: Composite Interaction Map with Local Variance Suppression

Let Vlocal be the variance of the 5 central scattering values, and let ∆max be the largest

absolute jump across all steps.

Cost6 =

(
(Slope norm+ R-sq norm)2

1 + 3s2 · p

)0.75

+ log(1 + Vlocal) +
50

1 + ∆max

(A.6)

Justification: Fuses multiple effects: local variance suppression, maximum drop size,

and nonlinear penalty reduction through classification confidence and neighborhood stability.

Cost Function 7: Piecewise Entropy-Weighted Composite with Penalized Vari-

ability Envelope

Let y = {y1, . . . , y10} be the scattering values, and define:

Entropy = −
9∑

i=1

p̂i log p̂i, where p̂i =
|yi+1 − yi|∑9
j=1 |yj+1 − yj|

Cost7 =


(Slope norm0.9 + 3 · (1− s)1.5) · log(1 + Entropy) if M < 0.8

(R-sq norm1.1 + 10 · (1− p)2) ·
(
1 + σy

∆2
avg

)
otherwise

(A.7)

Justification: Captures signal entropy and penalizes jump irregularity. It changes form

depending on monotonicity threshold, making it highly adaptable to structural variation.
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Cost Function 8: Exponential-Logarithmic Hybrid with Drop Rank Scoring and

Saturation Envelope

Let Rrank be the trace’s rank among all samples based on average drop magnitude.

Cost8 = 100 ·

1− tanh

 s · p · log(1 + ∆avg)

1 +
(
Slope norm·R-sq norm

Rrank

)0.7



1.2

(A.8)

Justification: Highly nonlinear formulation that sharply differentiates between elite and

average traces. Strong penalty for high-ranked but noisy or unstable configurations.
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Appendix B

SLURM Usage for qlicS batch

This appendix provides a concise walkthrough of common SLURM commands useful for

running and debugging qlicS batch jobs on a high-performance computing cluster. It starts

from interactive testing via srun and culminates in full-scale job submission via sbatch.

Interactive Sessions:

• srun --pty bash

Launch a basic interactive shell on a compute node. Useful for debugging and loading

modules.

• srun -n 4 --pty bash

Launches an interactive shell with 4 tasks (useful when testing multiprocessing or

MPI).

• srun -n 50 --mem=500G --time=00:10:00 --pty bash

Starts an interactive job with 50 processes, 500 GB of memory, and a wall time limit

of 10 minutes. Ideal for short batch-wide testing of ‘qlicS batch‘.

• srun -n 1 python my script.py

Executes a Python script using 1 process.
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• srun -n 32 python qlicS batch.py --config-folder config dir --threads 32

Example call to execute ‘qlicS batch.py‘ with 32 parallel threads using ‘srun‘.

Submitting Jobs via sbatch:

Use sbatch when running larger or longer jobs. Below is a minimal working example of

a SLURM batch script for running qlicS batch:

Listing B.1: Example SLURM job script: submit qlics.sh

#!/ bin / bash

#SBATCH −−job−name=q l i c s b a t c h

#SBATCH −−output=l o g s / ou tpu t %j . t x t

#SBATCH −−error=l o g s / e r r o r %j . t x t

#SBATCH −−ntask s=64

#SBATCH −−mem=750G

#SBATCH −−t ime =12:00:00

#SBATCH −−p a r t i t i o n=genera l

#SBATCH −−mail−type=END,FAIL

#SBATCH −−mail−user=your email@domain . edu

Submit the job using:

sbatch subm i t q l i c s . sh

Useful Commands for Monitoring Jobs:

• squeue -u $USER — show your current jobs

• scancel <job id> — cancel a submitted job

• sacct -j <job id> — view job accounting details

This workflow provides both an interactive and automated pipeline for efficiently launch-

ing qlicS batch at scale.
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Appendix C

Annotated Configuration File

Below is a fully annotated example configuration file, formatted for clarity using the minted

package. This file corresponds to a typical input used by QLICS to define simulation param-

eters, trap geometry, laser parameters, and the experimental sequence. Comments are in-

cluded inline to clarify the purpose of each parameter in the context of the simulation [3, 15]:

[directory]

dump_dir = /Users/michaelmitchell/qlicS/data/2024-07-01_17-08-03/ # Output path

for simulation data↪→

[live_vars]

current_timesequence_pos = 2 # Time index used in iter mode; selects timestep

chunk from list↪→

[constants] # Physical constants used in LAMMPS unit conversions

h = 6.626e-34

c = 299792458

amu = 1.6605402e-27

ele_charge = 1.60217663e-19

boltzmann = 1.380649e-23
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[ions] # All ion species in the simulation with physical properties

be+ = [{'mass': 9, 'charge': 1}, {'natural linewidth': 113097335.53, 'absorption

center': 9.578e14, 'saturation': 765}]↪→

o2+ = [{'mass': 32, 'charge': 1}, {'natural linewidth': None, 'absorption

center': None, 'saturation': None}]↪→

o+ = [{'mass': 16, 'charge': 1}, {'natural linewidth': None, 'absorption center':

None, 'saturation': None}]↪→

[sim_parameters]

log_steps = 10 # Number of simulation steps per log output

timesequence = [[1e-08, 2.5e5],[1e-08, 2.5e5],[1e-08, 2.5e5],[1e-08, 2.5e5]] #

Each timestep and duration pair↪→

lammps_boundary_style = ['f', 'f', 'f'] # Fixed boundary conditions

lammps_boundary_locations = [[-.001, .001],[-.001, .001],[-.001, .001]] # Trap

size bounds (m)↪→

lammps_allow_lost = True # Allow ions to leave the simulation box

[detection]

detection_timestep_seq = [[]] # Timestep windows during which photon counts are

collected↪→

detector_area = 0.0001 # Area of detector (m^2)

detector_effeciency = 0.01 # Detection efficiency

detector_distance = 0.2 # Distance from center to detector (m)

# Three ion clouds, each with a species, radius (m), and number of ions

[ion_cloud_0]

uid = 1

species = be+
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radius = 1e-4

count = 20

[ion_cloud_1]

uid = 2

species = o2+

radius = 1e-4

count = 9

[ion_cloud_2]

uid = 3

species = o+

radius = 1e-4

count = 1

# RF trap definitions (1 per cloud), with voltages and axial confinement settings

[trap_0]

uid = 11012277363

target_ion_pos = 0

radius = 1.25e-3

length = 1.5e-3

kappa = 0.17

frequency = 11040000

voltage = 50

endcapvoltage = 1

pseudo = True # Use pseudopotential approximation

[trap_1]

uid = 12012277363

114



target_ion_pos = 1

radius = 1.25e-3

length = 1.5e-3

kappa = 0.17

frequency = 11040000

voltage = 50

endcapvoltage = 1

pseudo = True

[trap_2]

uid = 13012277363

target_ion_pos = 2

radius = 1.25e-3

length = 1.5e-3

kappa = 0.17

frequency = 11040000

voltage = 50

endcapvoltage = 1

pseudo = True

# Doppler cooling laser applied to Be+ ions

[cooling_laser_0]

uid = 569202603907002

target_ion_pos = 0

target_ion_type = be+

beam_radius = 0.0001

saturation_paramater = 100

detunning = -300000000.0 # Red-detuned for cooling

laser_direction = [0.5, 0.5, 0.7071]
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laser_origin_position = [0, 0, 0]

# Resonant laser used to induce scattering on Be+ (visible readout)

[scattering_laser]

scattered_ion_indices = [0, 20]

target_species = be+

laser_direction = [-0.5, -0.5, -0.7071]

saturation_paramater = 5

frequency = 957800000000000.0

# Modulation/tickle field applied to drive resonance motion

[modulation_0]

uid = 469202603907006

amp = 1 # Field amplitude

frequency = 6.5e5 # Sweep center frequency

ex0 = 1 # Field aligned in x-direction

# All other spatial field components off

x_shift = 0

y_shift = 0

z_shift = 0

static = [0, 0, 0]

[iter] # Defines param scan for iter-based simulations

scan_objects = ["cooling_laser_0","modulation_0"]

scan_var = ["modulation_0", "frequency"]

scan_var_seq = [999000, 178000, 387000, 999000]

iter_timesequence = [[1e-08, 1e5], [1e-08, 1e5], [1e-08, 1e5]]

iter_detection_seq = [[2.9e5, 3.0e5]]
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com_list =

cooling_laser,evolve,r_569202603907002,tickle,evolve,r_469202603907006,evolve

# Defines command sequence

↪→

↪→

[exp_seq] # Startup sequence before each iteration

com_list = dumping,cloud,cloud,cloud,trap,trap,trap,iter

This configuration file governs all aspects of a simulation run in QLICS, including crystal

generation, trap field behavior, tickling experiments, and photon scattering detection. Each

section is modular and easily editable for experimental prototyping or automated optimiza-

tion.
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