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Variation of Constants

Vibration and rotation energy levels 
are sensitive to variation in the proton-to-electron 

mass ratio m. Our sensitivity to any change depends on the 
particular transition chosen and how well we can measure its 

frequency.

With a molecule, we have many transitions available, so many 
systematic effects can be calibrated in situ.

Figures of merit when
choosing a transition:

Sensitivity of O2
+

vibration transitions:
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313 nm Be+ Laser
Lasers

•	Triple 939 nm diode laser to 313 nm 
(second-harmonic generation followed 
by sum-frequency generation)

•	Up to 36 mW of power at 313 nm 
•	10% power stability over 12 hours
•	3% short-term stability
•	Optics Express 25, 7220 (2017)

Computer control
•	Quantum Logic Ion Control (QLIC) 

python scripting language
•	LabVIEW GUI 
•	Controls main sequencer (digital 

outputs), DDSes, analog outputs, PMT 
input

The apparatus
•	UHV chamber with laser, imaging, and 

electrical access
•	Beryllium wire ovens
•	Precision leak valve for gas introduction
•	Electron emitter for impact ionization of 

beryllium and background gas
•	Trap parameters: r0 = 1.2 mm, z0 = 1.5 mm, 

		  Wrf = 2p(35 MHz)
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Quantum logic spectroscopy

Normal modes:
   an information bus
   shared by both ions
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Atomic logic ion provides all
	 dissipation
Target ion has an interesting
	 spectroscopic transition

General procedure
•	Co-trap ions
•	External state preparation 

	 (sympathetic cooling)
•	Internal state preparation 

	 (quantum projection)
•	Spectroscopy probe of target ion
•	State detection (non-destructive)

Our interest: molecules
•	Quantum control of rotation states
•	Rotation spectroscopy
•	Quantum memory
•	Tests of molecular quantum theory
•	Time variation of fundamental 

constants
•	Symmetry tests (P, T)

Leveraging quantum information processing techniques for precision measurement
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Beryllium logic ion 9Be+

I = 3/2

Γ = 2π(19.4 MHz)

νhfs = 1.25 GHz

•	Dissipation via photon scattering
•	Hyperfine qubit
•	Single isotope
•	Ideal for lighter target ions
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Deeply bound diatomic molecular ions are of interest for a variety of studies, 
such as precision measurements, quantum control of rotational states, or 
quantum memory. We are particularly interested in homonuclear systems, 
which show promise at suppressing certain systematic effects. We present 
an apparatus capable of controllably leaking O2, ionizing and sympathetically 
cooling trapped O2

+, and performing state-selective photoionization. We 
report on progress toward initial measurements with oxygen, and discuss 
a proposed precision measurement of the time variation of the proton-to-

electron mass ratio using trapped O2
+.
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The three lowest electronic states of O2
+
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Loading O2
+

Detecting Normal Modes:

We measure our 
normal modes by 
resonant modulation 
of the trap potential 
through a DC elec-
trode and detecting 
fluorescence with a 
PMT
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We have successfully leaked O2 into 
the trap and ionized by electron impact. 
The image series at right shows O2

+ 

(and possibly O+) in a crystal with 
Be+. The dark ions are identified by 
adjusting the radial trap parameters 
to make the trap unstable in a mass-
selective way.

In the future, we will state-
selectively load O2

+ by 
photoionization. Using 
a doubled pulsed dye 
laser, two 296.5 – 303.5 
nm photons excite from 
the ground X 3Sg

- state to 
the d 1Pg state. An extra 
photon excites to the ion 
X 2Pg state, preserving 
rotation. At right are 
plots showing the X-to-d 
excitation spectra at 
room temperature and 
5K, as in a pulsed beam.
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