
The Laboratory

• Multizone trap

• Two ion species

(9Be+ and 24Mg+)

• Five dye lasers

frequency-doubled

to the UV

• 16+ laser beams hitting the ions

• 30 PID loop filters to stabilize laser frequencies

and intensities

• Field-programmable gate array (FPGA) control

of laser pulses and rf frequencies/phases

• Laser frequencies

fine-tuned using rf

from direct digital

synthesis (DDS)

chips

• Custom GUI and

programming

language for

experiment control
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The universal quantum computer is a device that

could simulate any physical system and

represents the major goal for the field of

quantum information science. Such a device

requires the ability to perform all possible unitary

transformations in the system’s Hilbert space.

Here we demonstrate universal control of a four-

dimensional quantum system. We implement a

quantum algorithm that realizes any unitary two-

qubit operation up to a physically irrelevant

global phase. Using quantum state and process

tomography, we characterize the fidelity of our

implementation for a large number of randomly

chosen unitaries. The methods used here are

scalable to higher dimensional Hilbert spaces.

Quantum Computation

• Capable of simulating any physical system1

• Capable of accelerating certain calculations2

• One and two-qubit gates are universal3

• Our scheme, the ion-trap quantum CCD4

9Be+ Hybrid Qubit Storage

• Map the qubit among three

manifolds using the strengths of

each.

• Spectroscopically resolved
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Synthesizing Arbitrary Operations

Steps to universal control

1. Pick a two-qubit operation, e.g., a random matrix in SU(4)

with Haar measure

2. Find an operation in its local equivalence class, i.e., identical

up to single-qubit operations (3 degrees of freedom)

3. Find the single-qubit operations (12 degrees of freedom)

All two-qubit operations are members of the group SU(4) up to

a global phase. All members of this group can be realized with

at most three of our two-qubit gates with the algorithm below.

This can be done analytically using local invariants of two-qubit

gates when represented in the “magic” Bell basis9,10:

For example, the operations

M, L SU(4) are equivalent

up to single-qubit operations iff

MB
TMB and LB

TLB have the

same eigenvalues.

• State-dependent optical dipole force

• Drive around a loop in phase space to add a

phase

• State-dependence from differential a.c. Stark

shift

• Tune between the highest frequency axial

modes to resonantly excite them

• The ion spacing controls the phase of the force

(e.g. space by odd- /2 to drive only | and

| on a symmetric mode).

Universal Gate Set

Single-qubit /2 rotations

Single-qubit z rotations

Two-qubit geometric phase gate6

• Coherent stimulated Raman transition4

• Adjust the laser phase relative to the qubit

• Individual addressing through separation

• Step the laser phase relative to the qubit 2P1/2

2P3/2

313 nm

197 GHz

~ 70 GHz

2S1/2

State Tomography

Apply 10 randomly chosen unitaries each to 16

orthogonal input states and conduct state

tomography on the outcomes.

Measure a mean state fidelity of

Example states (solid is exp., transparent is ideal):

Tomographic Data
Process Tomography

Obtain the process matrix11 for 11 of these by

analyzing all 16 input states in 9 measurement

bases.

Measure a mean process fidelity of

Experimental:

Ideal:

Example matrix

24Mg+ Sympathetic Cooling
• Doppler cool before each single-qubit gate

• Resolved-sideband cool before each two-qubit gate

• Does not affect qubit coherence7 (280 nm versus 313 nm)

• The four-ion crystal can be ordered and has four axial normal modes8
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