Universal quantum control of two qubits
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Quantum Computation The universal quantum computer is a device that The Laboratory
could simulate any physical system and + Multizone trap
represents the major goal for the field of . . s
. . _ . . . .  Two Ion species
Capable of accelerating certain calculations? quantum Information science. Such a device s a s
requires the ability to perform all possible unitary ("Be* and “*Mg")
transformations in the system’s Hilbert space. * Five dye lasers
Our scheme, the ion-trap quantum CCD* Here we demonstrate universal control of a four- frequency-doubled
- dimensional quantum system. We implement a to the UV
®. A AlpELE guantum algorithm that realizes any unitary two-
___ qubit operation up to a physically irrelevant | . |
two-qubit gate global phase. Using quantum state and process « 30 P_ID Ioo_p filters to stabilize laser frequencies
I tomography, we characterize the fidelity of our and intensities
— >0 eeccses Memory implementation for a large number of randomly « Field-programmable gate array (FPGA) control
____, guantum information transfer chosen unitaries. The methods used here are of laser pulses and rf frequencies/phases
®4————  © Processing scalable to higher dimensional Hilbert spaces. - Laser frequencies
fine-tuned using rf
from direct digital
synthesis (DDS)
°Be* Hybrid Qubit Storage Universal Gate Set chips
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« Spectroscopically resolved Two-qubit geometric phase gate » Does not affect qubit coherence’ (280 nm versus 313 nm)

Magnetic-field- Two-qubit gate Measurement . State-dependent optical dipole force
independent manifold manifold Imanlfold . Drive around a loop in phase space to add a
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Synthesizing Arbitrary Operations Tomographic Data
State Tomography Process Tomography
All two-qubit operations are members of the group SU(4) up to o 40 . ' » _ 1
a global phase. All members of this group can be realized with Apply 10 randomly chosen unitaries each to 16 | _ | Obtain the process matrix™ for 11 of these by
at most three of our two-qubit gates with the algorithm below. orthogonal input states and conduct state 30 [ analyzing all 16 input states in 9 measurement
tomography on the outcomes. 8 ol - | bases.
Measure a mean state fidelity of 5 1 > | Measure a mean process fidelity of
— . —F ! >
fresuw) = 79(5)% ) | Fycsuy = 79(3)7%
Example states (solid is exp., transparent is ideal): . - de(:itss o Example matrix F =082
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I " | | | Experimental:
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Steps to universal control
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1. Pick a two-qubit operation, e.g., a random matrix in SU(4)
with Haar measure

2. Find an operation in its local equivalence class, i.e., identical
up to single-qubit operations (3 degrees of freedom)

3. Find the single-qubit operations (12 degrees of freedom)

This can be done analytically using local invariants of two-qubit
gates when represented in the “magic” Bell basis®0:

1 i For example, the operations

—2(|ll>+|TT>)a 2(|lT>+|Tl>), M, L e SU(4) are equivalent
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1 ' Inale-qubit operations iff
I = 1110 —= (|1 1) = [11))  Up to single-q P
D=1 G5 (D =T Mg'™™Mg and Lg'Lg have the
same eigenvalues.




