
Measurements of the electron g-factor, combined with an independent 
measurement of the fine structure constant, represent the most precise test of QED.  
Alternately, assuming the validity of QED, the g-factor measurement provides the 
most precise determination of the fine structure constant.

The highest precision g-factor measurement published to date, at 3.8 
parts per billion, was performed using classical cyclotron spectroscopy in a 
hyperbolic Penning trap at a temperature of 4 K.  We use single quantum cyclotron 
spectroscopy in a cylindrical Penning trap at 100 mK.  With these techniques, we 
hope to achieve at least an order of magnitude higher precision. We can repeatedly 
measure the g-factor to a precision of 1 ppb and are analyzing systematic effects.  
The leading-order systematic of the previous measurement was cavity shifts; our 
cylindrical trap allows for easy calculation of the cavity modes.  These calculations, 
when combined with actual measurements of the modes, allow us to greatly reduce 
that effect.
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Classical, non-relativistic

Dirac equation as single-
particle wave equation

Quantum Electrodynamics 
(QED)

The anomalous magnetic moment
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QED and g-2
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The agreement, or lack thereof, among 
measurements of α serves as a test of QED.

The standard model predicts that the anomaly, a, can be expanded in powers of the fine structure constant, α.
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The Penning Trap
B Field E Field magnetron

motion

axial
motion

cyclotron
motion

motion frequency hυ/kb damping

axial 200 MHz 10.0 mK 1 Hz

cyclotron 149.0 GHz 7.2 K 0.02 Hz

spin 149.2 GHz 7.2 K 10-12 Hz

magnetron 134 kHz 0.64 μK 10-15 Hz

A uniform magnetic field confines the electron radially, while 
a static quadrupole electric field confines it axially.  The slow 

magnetron motion is caused by the electron’s E x B drift.

g-2 in a Penning Trap
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In a Penning trap, however, the electric 
field perturbs the magnetic motion, 
resulting in a correction
to      the       measured
anomaly  and cyclotron
frequencies.

In free space, the anomaly is 
just the ratio of the anomaly 
frequency to the 
cyclotron frequency.
(νa = νs - νc)



Apparatus

A 5.3 T superconducting magnet provides the 
field for the Penning trap.  A dilution refrigerator 
keeps the trap electrodes at 100 mK.

It is a tabletop experiment…provided you have a 
high enough ceiling.



Detection
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…of the Axial Motion …of the Cyclotron State
The electron’s axial motion induces image currents on 
the trap electrodes.  By coupling these currents to a 
tuned circuit and amplifying them, we can measure the 
frequency and relative amplitude of this motion.  By 
positively          feeding 
the    detected    signal
back  to  the   electron,
We  can  measure  the 
axial     frequency     to
better   than   1  Hz   in
200 MHz.
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The 149 GHz cyclotron frequency is too high for 
direct detection.  We use nickel rings to introduce a 
quadratic perturbation in the magnetic field.  This 
perturbation makes the axial potential well (and 
thus the axial frequency) depend on the total 
magnetic moment of the electron and thus on the 
spin   and   cyclotron   states.    For   our   bottle,   a 

quantum                         jump 
corresponds     to    a    4  Hz 
shift  in  axial  frequency.

+ Magnetic 
transitions are 
detected by axial 
frequency shifts.

- A finite axial 
temperature smears 
the magnetic field.

nickel
rings
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Quantum Jumps

Inhibited Spontaneous Emission
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The free space cyclotron lifetime = 0.1 s.

We have achieved a 16 s lifetime.

Cyclotron Transitions:

Spin Flip

•The magnetic bottle allows us to make QND            
measurements of the cyclotron state.

•We can watch quantum jumps in real-time.



Low Temperature
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•Running below 1 K leaves the cyclotron motion in the ground state all the time.

•This allows for single quantum cyclotron spectroscopy, and all cyclotron transitions are driven, not thermal.

•Low quantum numbers eliminate the relativistic broadening (1 ppb/quantum) of classical spectroscopy.

Thermal jumps are eliminated as the trap temperature is 
decreased from 4.2 K to 80 mK.



Cavity Modes

•Cavity modes shift νc
Systematic error in g-2

•Hyperbolic trap has low Q modes
Electron and cavity interact

for all values of the magnetic field

•Mode geometries are hard to calculate
Estimating error is difficult

•These problems led to a 3.8 ppb uncertainty in the 
1987 University of Washington g-2 measurement
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•Cylindrical trap modes are much easier to calculate 
and identify.

•Operating at an appropriate spot between modes 
eliminates cavity-shift problems.

•The residual cavity shift is expected to contribute
< 1 ppb to g-2.

Hyperbolic Trap Problem Cylindrical Trap Solution



Experimental Challenges
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Friday, Saturday construction

< 1 ppb noise and drift at night

~ 0.1 K temperature regulation of dewar

Magnetic Field Stability

•Magnet with two broken shim coils
•No room temperature regulation

•Well-shimmed magnet
•Room temperature regulation

to 0.1 K

Room temperature fluctuations affect the electric field seen by the 
electron because the magnet coils and the trap electrodes are 
mounted independently and can move relative to each other.

Other Challenges

•Vibration

Nuclear paramagnetism of electrodes

Cryogen pressure regulation

•Radiation leakage from 300 K causes 
cyclotron jumps



The Cyclotron Line

Harvard cyclotron line

R.S.Van Dyck et al. Phys. Rev. Lett. 59, 26 (1987)
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Procedure:

•With the electron in the N = 0 state, pulse the cyclotron 
drive (149 GHz).
•Look for excitations to N ≥ 1.
•Make a histogram of excitations versus frequency.



The Anomaly Line
R.S.Van Dyck et al. Phys. Rev. Lett. 59, 26 (1987)
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Procedure:

•With the electron in the |0,↑〉 state, pulse the anomaly 
drive (172 MHz).
•Look for a transition to |1,↓〉, which decays to |0,↓〉.
•Make a histogram of spin flips versus frequency.
•In order to prepare for the next measurement, put the 
electron into the |0,↑〉 state by applying the cyclotron 
and anomaly drives either simultaneously or 
sequentially.



Power Systematics

cyclotron drive X-band power (dBm)  
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•g-2 is repeatable to better than 1 ppb.

•Power shifts look small.



Mode Mapping

8.5
8.0
7.5
7.0

146144142140

9.0
8.5
8.0
7.5
7.0

138136134132

8.0
7.5
7.0
6.5
6.0

154152150148

frequency (GHz)

ce
nt

er
 o

f m
as

s 
en

er
gy

 (
a.

u.
) 

   TE135 TE143 TE117

TM117
TM141 TM135 TE127

TM143 TM127

*

*
*

* *

Measuring the cyclotron frequency on several features (*) 
allows us to calibrate our mode maps.
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Strongly-coupled modes saturate as the 
number of  electrons  is  decreased  from 
3 x 104 to 1.6 x 104.

Parametric Excitation
Driving a cloud of electrons at twice the axial 
frequency allows us to probe the mode 
structure of the trap cavity.  The modes cool 
the cyclotron motion of the electrons.  The 
other degrees of freedom are coupled to the 
cyclotron motion through collisions, so they 
too are cooled, and the cloud’s motion 
synchronizes.

1.0

0.8

0.6

0.4

0.2

0.0

γ c 
(H

z)

1.8

1.7

1.6

1.5

1.4

1.3c.
o.

m
. e

ne
rg

y 
(a

.u
.)

152151150149148147146

 ωc / (2π) (GHz)

TE127

TM143

Our current 
region of interest:
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