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Measurements of the electron g-factor, combined with an independent
measurement of the fine structure constant, represent the most precise test of QED.
Alternately, assuming the validity of QED, the g-factor measurement provides the
most precise determination of the fine structure constant.

The highest precision g-factor measurement published to date, at 3.8
parts per billion, was performed using classical cyclotron spectroscopy in a
hyperbolic Penning trap at a temperature of 4 K. We use single quantum cyclotron
spectroscopy in a cylindrical Penning trap at 100 mK. With these techniques, we
hope to achieve at least an order of magnitude higher precision. We can repeatedly
measure the g-factor to a precision of 1 ppb and are analyzing systematic effects.
The leading-order systematic of the previous measurement was cavity shifts; our
cylindrical trap allows for easy calculation of the cavity modes. These calculations,
when combined with actual measurements of the modes, allow us to greatly reduce
that effect. THER

This work is supported by the National
Science Foundation.

D. Hanneke is supported by the Army
Research Office.




e —
The anomalous magnetic moment
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The standard model predicts that the anomaly, a, can be expanded in powers of the fine structure constant, a.
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B Field

A uniform magnetic field confines the electron radially, while
a static quadrupole electric field confines it axially. The slow
magnetron motion is caused by the electron’s E x B drift.
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In free space, the anomaly is
just the ratio of the anomaly

frequency to the
cyclotron frequency.
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pparatus

A 5.3 T superconducting magnet provides the
field for the Penning trap. A dilution refrigerator
keeps the trap electrodes at 100 mK.

It is a tabletop experiment...provided you have a
high enough ceiling.
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Detection
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The electron’s axial motion induces image currents on
the trap electrodes. By coupling these currents to a
tuned circuit and amplifying them, we can measure the

frequency and relative amplitude of this motion. By
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the detected signal s L N |
back to the electron, = | i
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The 149 GHz cyclotron frequency is too high for
direct detection. We use nickel rings to introduce a
quadratic perturbation in the magnetic field. This
perturbation makes the axial potential well (and
thus the axial frequency) depend on the total
magnetic moment of the electron and thus on the
spin and cyclotron states. For our bottle, a

quantum jump

corresponds to a 4 Hz

shift in axial frequency.
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Cyclotron Transitions:
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*The magnetic bottle allows us to make QND

measurements of the cyclotron state.
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*We can watch quantum jumps in real-time.
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Low Temperature

*Running below 1 K leaves the cyclotron motion in the ground state all the time.
*This allows for single quantum cyclotron spectroscopy, and all cyclotron transitions are driven, not thermal.

«Low quantum numbers eliminate the relativistic broadening (1 ppb/quantum) of classical spectroscopy.

cyclotron quantum number

0 5 10 15 20 25 30 35 40 45 50
time (minutes)
Thermal jumps are eliminated as the trap temperature is
decreased from 4.2 K to 80 mK.



avity Modes
T Hyperbolic Trap Problem | Cylindrical Trap Solution

«Cavity modes shift v,
» Systematic error in g-2

*Hyperbolic trap has low Q modes
»Electron and cavity interact
for all values of the magnetic field

*Mode geometries are hard to calculate
»Estimating error is difficult

*These problems led to a 3.8 ppb uncertainty in the
1987 University of Washington g-2 measurement
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*Cylindrical trap modes are much easier to calculate
and identify.

*Operating at an appropriate spot between modes
eliminates cavity-shift problems.

*The residual cavity shift is expected to contribute
<1 ppb to g-2.



Experimental Challenges
W

Room temperature fluctuations affect the electric field seen by the
electron because the magnet coils and the trap electrodes are
mounted independently and can move relative to each other.
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guantum jump fraction

The Cyclotron Line

<5 R.S.Van Dyck et al. Phys. Rev. Lett. 59, 26 (1987)
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The Anomaly Line

R.S.Van Dyck et al. Phys. Rev. Lett. 59, 26 (1987)
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With the electron in the |0,T) state, pulse the anomaly [ E — =
drive (172 MHz). 8 | 7

«L ook for a transition to |1,{), which decays to [0,4).
*Make a histogram of spin flips versus frequency.

*In order to prepare for the next measurement, put the
electron into the |0,T) state by applying the cyclotron
and anomaly drives either simultaneously or
sequentially.
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ower Systematics
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*g-2 is repeatable to better than 1 ppb.

*Power shifts look small.
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Mode Mapping
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Strongly-coupled modes saturate as the
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_ ; Driving a cloud of electrons at twice the axial
region of interest:

frequency allows us to probe the mode
structure of the trap cavity. The modes cool
the cyclotron motion of the electrons. The
other degrees of freedom are coupled to the
cyclotron motion through collisions, so they
too are cooled, and the cloud’s motion
synchronizes.
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